1x+2y+1=42x−1y+1=3Đặt a=1x; v=1y+1
Hệ phương trình trở thành a+2b=42a−b=3⇔a=2b=1
⇒1x=21y+1=1⇔x=12y=0
Vậy (x;y)=(12;0)
a) Cho hệ phương trình 3x−y=2m−1x+2y=3m+2⋅ Giải hệ phương trình khi m=1 .
Cho hệ phương trình 3x−y=2m+3x+2y=3m+1 (m là tham số).
Giải hệ phương trình với m = 2.
b Tìm m để hệ phương trình có nghiệm (x; y) thỏa mãn điều kiện x2 + y2 = 5
b) Khi M di động trên cung nhỏ BC thì diện tích tứ giác AEFD không đổi.
Cho đường tròn (O), hai đường kính AB và CD vuông góc với nhau, điểm M thuộc cung nhỏ BC. Gọi E là giao điểm của MA và CD, F là giao điểm của MD và AB. Chứng minh rằng:
a) DAE^=AFD^
Cho tứ giác ABCD có bốn đỉnh thuộc đường tròn . Gọi M, N, P, Q lần lượt là điểm chính giữa các cung AB, BC, CD, DA. Chứng minh rằng : .MP⊥NQ