2) Chứng minh rằng phương trình (1) luôn có hai nghiệm phân biệt với mọi m Gọi là hai nghiệm của phương trình (1) lập phương trình bậc hai nhận và là nghiệm.
2) Ta có
Do đó, phương trình (1) luôn có hai nghiệm phân biệt.
Từ giả thiết ta có
Áp dụng định lí Viét cho phương trình (1) ta có ;
Ta có
Vậy phương trình bậc hai nhận
là nghiệm là
Cho phương trình (m là tham số). Tìm m để phương trình có hai nghiệm phân biệt x1, x2 thỏa mãn .
Cho phương trình (x là ẩn số) (1)
a) Chứng minh rằng phương trình luôn luôn có nghiệm với mọi m.
b) Tìm m để hai nghiệm x1; x2 của phương trình đã cho thỏa mãn điều kiện |x1-x2|=17.
Cho phương trình bậc hai ẩn (m là tham số).
a) Chứng minh rằng phương trình luôn có hai nghiệm phân biệt x1; x2 với mọi tham số m.
Tìm m để phương trình có hai nghiệm phân biệt x1; x2 thỏa mãn điều kiện:
Gọi x1, x2 là 2 nghiệm phân biệt của phương trình. Tìm các giá trị của m sao cho .
b. Tìm các giá trị của m để phương trình (1) có hai nghiệm sao cho biểu thức đạt giá trị lớn nhất.
Cho phương trình . Gọi là hai nghiệm phân biệt của phương trình.
Không giải phương trình, hãy tính giá trị của biểu thức:
b. Gọi x1 và x2 là nghiệm của phương trình (1). Tìm giá trị nhỏ nhất của biểu thức
b) Tìm giá trị của m để phương trình (1) có hai nghiệm phân biệt x1 , x2 sao cho biểu thức đạt giá trị nhỏ nhất.
Tìm m để phương trình: x2 +5x+3m-1=0 (x là ẩn, m là tham số) có hai nghiệm x1, x2 thỏa mãn .
Cho phương trình là tham số. Tìm giá trị của m để phương trình có hai
nghiệm phân biệt thỏa mãn