Thứ sáu, 15/11/2024
IMG-LOGO

Câu hỏi:

17/07/2024 72

Trên tia đối của tia BA lấy điểm C, MC  cắt đường tròn tại D. ND cắt AB tại E. Chứng minh rằng tứ giác MDEH nội tiếp và chứng minh các hệ thức sau: NB2=NE.NDAC.BE=BC.AE.

Trả lời:

verified Giải bởi qa.haylamdo.com

·                     Chứng minh rằng tứ giác MDEH nội tiếp.

Ta có: MDN^=90° ( góc nội tiếp chắn nửa đường tròn).

Xét tứ giác MDEH có:

MDE^+EHM^=90°+90°=180° ( Hai góc đối diện bù nhau).

tứ giác MDEH nội tiếp đường tròn.

·                     Chứng minh rằng:NB2=NE.ND.

MNAB tại H mà HA=HB (chứng minh trên) NA=NB

Xét ΔNBD ΔNEB có:

N^ là góc chung.

NDB^=12sdNBNBE^=12sdNA( hai góc NDB^NBE^ là hai góc nội tiếp đường tròn (O;R))

NA=NBNDB^=NBE^ 

ΔNBD~ΔNEB (g - g)

NBNE=NDNB 

NB2=NE.ND(đpcm)

·    Chứng minh rằng: AC.BE=BC.AE.

Ta có: NDB^=12sdNBADN^=12sdNA( hai góc NDB^ADN^ là hai góc nội tiếp đường tròn (O;R)). Mà NA=NBNDB^=ADN^

                        DN là tia phân giác của góc ADB^.

                        AEEB=DADB ( tính chất tia phân giác) (1)

                        Mặt khác: MDN^=90(chứng minh trên) NDDCMDA^+ADN^=CDB^+BDN^=90

                          NDB^=ADN^(chứng minh trên) BDC^=ADM^, ADM^=CDx^(đối đỉnh)

                        BDC^=CDx^DClà tia phân giác ngoài của góc ADB^

                        ACBC=DADB ( tính chất tia phân giác) (2)

                        Từ (1),(2) ACBC=AEEBAC.BE=BC.AE (đpcm)

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho đường tròn tâm O, đường kính AB. Trên tiếp tuyến của đường tròn (O)  tại A lấy điểm M(M khác A ). Từ M vẽ tiếp tuyến thứ hai MC với đường tròn (O) (C là tiếp điểm). Kẻ CHAB (HAB),MB cắt đường tròn (O) tại điểm thứ hai là K và cắt CH tại N. Chứng minh rằng:

a) Tứ giác AKNH nội tiếp trong một đường tròn.

Xem đáp án » 19/10/2022 401

Câu 2:

Lúc 6h sáng, bạn An đi xe đạp từ nhà (điểm A) đến trường (điểm B) phải leo lên và xuống một con dốc (như hình vẽ bên dưới). Cho biết đoạn thẳng AB dài 762m, góc A bằng 6o và góc B bằng 4o.

Lúc 6h sáng, bạn An đi xe đạp từ nhà (điểm A) đến trường (điểm B) phải leo lên và xuống một con dốc (như hình vẽ bên dưới). (ảnh 1)

a) Tính chiều cao h của con dốc

Xem đáp án » 19/10/2022 386

Câu 3:

Cho điểm M nằm bên ngoài đường tròn (O; R). Từ điểm M kẻ hai tiếp tuyến MA,MB với đường tròn đó ( A, B là các tiếp điểm ). Qua điểm A kẻ đường thẳng song song với MB cắt đường tròn (O;R) tại C. Nối MC cắt đường tròn (O; R) tại D. Tia AD cắt MB tại E .

a) Chứng minh MAOB là tứ giác nội tiếp.

Xem đáp án » 19/10/2022 323

Câu 4:

Cho đường tròn (O) có tâm là điểm O, đường kính AB=2R. Trên đường thẳng lấy AB lấy H sao cho B nằm giữa A và H (H không trùng với B), qua H dựng đường thẳng d vuông góc với AB Lấy điểm C cố định thuộc đoạn thẳng OB (C không trùng với O và B). Qua điểm C kẻ đường thẳng a bất kỳ cắt đường tròn (O) tại hai điểm E, F (a không trùng với AB). Các tia AE và AF cắt đường thẳng d lần lượt tại M và N

a) Chứng minh rằng tứ giác BEMH nội tiếp đường tròn.

Xem đáp án » 19/10/2022 291

Câu 5:

Cho tam giác ABC có ba góc nhọn nội tiếp trong đường tròn (O; R). Các đường cao BE và CF cắt nhau tại H.
a) Chứng minh AEHF và BCEF là các tứ giác nội tiếp đường tròn.

Xem đáp án » 19/10/2022 273

Câu 6:

2. Chứng minh CE.CA=CB.CD

Xem đáp án » 19/10/2022 263

Câu 7:

Cho đường tròn (O), từ một điểm M nằm ngoài đường tròn (O) kẻ hai tiếp tuyến MA và MB của đường tròn (A, B là hai tiếp điểm). Kẻ đường kính BE của đường tròn (O). Gọi F là giao điểm thứ hai của đường thẳng ME và đường tròn (O). Đường thẳng AF cắt MO tại điểm N. Gọi H là giao điểm của MO và AB.

1.  Chứng minh tứ giác MAOB nội tiếp đường tròn.

Xem đáp án » 19/10/2022 259

Câu 8:

Cho tam giác ABC vuông tại A. Đường tròn tâm O đường kính AB cắt các đoạn BC và OC lần lượt tại D và I gọi H là hình chiếu vuông góc của A lên OC; AH cắt BC tại M.

a) Chứng minh: Tứ giác ACDH là nội tiếp và CHD^=ABC^.

Xem đáp án » 19/10/2022 225

Câu 9:

Cho tam giác ABC có 3 góc nhọn. Đường tròn (O) đường kính BC cắt các cạnh AB, AC lần lượt tại các điểm D và E. Gọi H là giao điểm của hai đường thẳng CD và BE.
a) Chứng minh tứ giác ADHE nội tiếp trong một đường tròn. Xác định tâm I của đường tròn này.

Xem đáp án » 19/10/2022 213

Câu 10:

Cho đường tròn (O) có đường kính AB và điểm C thuộc đường tròn đó (C khác A, B). Lấy điểm D thuộc dây BC (D khác B, C). Tia AD cắt cung nhỏ BC tại điểm E, tia AC cắt tia BE tại điểm F.

a) Chứng minh rằng: Tứ giác FCDE là tứ giác nội tiếp đường tròn.

Xem đáp án » 19/10/2022 208

Câu 11:

Cho nửa đường tròn (O;R) đường kính AB. Trên OA lấy điểm H (H khác O, H khác A). Qua H dựng đường thẳng vuông góc với AB, đường thẳng này cắt nửa đường tròn tại C. Trên cung BC lấy điểm M (M khác B, M khác C). Dựng CK vuông góc với AM tại K.

a) Chứng minh tứ giác ACKH nội tiếp đường tròn

Xem đáp án » 19/10/2022 200

Câu 12:

2. Từ điểm A nằm ngoài đường tròn (O). Vẽ hai tiếp tuyến AB, AC với đường tròn (O), (B, C là hai tiếp điểm).

a) Chứng minh tứ giác ABOC nội tiếp được đường tròn.

Xem đáp án » 19/10/2022 195

Câu 13:

b) Hỏi bạn An đến trường lúc mấy giờ? Biết rằng tốc độ trung bình lên dốc là 4km/h và tốc độ trung bình xuống dốc là 19km/h.

Xem đáp án » 19/10/2022 195

Câu 14:

Cho đường tròn tâm O, bán kính R. Từ điểm C nằm ngoài đường tròn kẻ hai tiếp tuyến CA, CB và cát tuyến CMN với đường tròn (O) (A, B là hai tiếp điểm, M nằm giữa C và N). Gọi H là giao điểm của CO và AB.

a) Chứng minh tứ giác AOBC nội tiếp.

Xem đáp án » 19/10/2022 186

Câu 15:

Cho nửa đường tròn tâm O đường kính AB=2R. Gọi M là điểm chính giữa của cung AB, N là điểm bất kỳ thuộc cung MB (N khác M và B). Tia AM và AN cắt tiếp tuyến tại B của nửa đường tròn tâm O lần lượt tại C và D

1. Tính số đo ACB^.

Xem đáp án » 19/10/2022 177