Cho tam giác ABC vuông tại B. Đường phân giác AD. Biết \[AB = 6cm,\,\,AC = 10cm\].
Chứng minh \[AK\parallel DF\]
\[\Delta AFK\] có AE vừa là đường cao, vừa là đường phân giác nên cân tại A và E là trung điểm của FK (1)
\[ \Rightarrow \widehat {AFK} = \widehat {AKF}\]. Mà \[\widehat {AFK} = \widehat {DKF}\,\,(AB\parallel DK)\] nên suy ra \[\widehat {AKF} = \widehat {DKF}\]
\[ \Rightarrow \Delta AKD\] cân tại K và E là trung điểm của AD (2)
Từ (1) và (2), suy ra tứ giác AKDF có hai đường chéo AD và FK cắt nhau tại trung điểm của mỗi đường nên AKDF là hình bình hành.
Do vậy \[AK\parallel DF\]
Cho tam giác ABC có \[AB = 18cm,\,AC = 24cm,\,BC = 30cm\]. Gọi M là trung điểm của BC. Qua M kẻ đường vuông góc với BC cắt AB, AC lần lượt ở D, E.
Chứng minh rằng: \[\Delta ABC\sim\Delta MDC\]
Cho tam giác ABC, AD là tia phân giác của góc A; \[AB < AC\]. Trên tia đối của tia DA lấy điểm I sao cho \[\widehat {ACI} = \widehat {BDA}\]. Chứng minh rằng
\[A{D^2} = AB.AC - BD.CD\]
Cho tam giác ABC vuông tại B. Đường phân giác AD. Biết \[AB = 6cm,\,\,AC = 10cm\].
Tính BD và CD
Cho tam giác ABC cân tại A, M là trung điểm của BC. Lấy các điểm D và E trên AB, AC sao cho \[\widehat {DME} = \widehat B\]
Chứng minh rằng \[\Delta BDM\sim\Delta CME\]
Cho tứ giác ABCD có diện tích 36 cm2, trong đó diện tích \[\Delta ABC\] là 11 cm 2. Qua điểm B kẻ đường thẳng song song với AC cắt AD ở M, cắt CD ở N. Tính diện tích \[\Delta MND\].
Cho tam giác ABC có \[AB = 6cm,\,AC = 9cm,\,BC = 12cm\] và \[\Delta MNP\] có \[MN = 24cm,\,NP = 18cm,\,MP = 12cm\].
Tính tỉ số diện tích của hai tam giác trên.
Cho tam giác ABC có ba góc nhọn, đường cao AH \[(H \in BC)\]. Kẻ tại D, \[HE \bot AC\] tại E.
Chứng minh \[\Delta AHB\sim\Delta ADH,\,\,\Delta AHC\sim\Delta AEH\]
Cho tam giác ABC vuông tại A có \[AB = 20cm,\,\,BC = 25cm\]. Gọi M là điểm thuộc cạnh AB.
Chứng minh \[AC.AD = AM.AB\]
Cho tam giác ABC vuông tại A. Đường phân giác của góc A cắt cạnh huyền BC tại D. Qua D kẻ đường thẳng vuông góc với BC và cắt AC tại E.
Chứng minh \(DE = DB\)
Cho tam giác ABC có ba góc nhọn. Các đường cao AD, BE, CF cắt nhau ở H.
Chứng minh rằng \[\Delta AFE\sim\Delta ACB\]
Cho hình thang ABCD \[(AB\parallel CD)\] có \[\widehat {DAB} = \widehat {DBC}\] và \[AD = 5cm,\,AB = 3cm,\,BC = 9cm\].
Chứng minh \[\Delta DAB\sim\Delta CBD\].
Cho tam giác ABC vuông tại A, đường cao AH. Biết \[AB = 4cm,\,AC = 3cm\].
Chứng minh \[\Delta HAC\sim\Delta ABC\].
Cho tam giác \(\Delta ABC\) có \(AB = 9cm,\,\,AC = 6cm\). Điểm D nằm trên cạnh AB sao cho \(AD = 2cm\). Gọi E là trung điểm của AC. Chứng minh \(\Delta AED\sim\Delta ABC\)
Cho tam giác ABC cân tại A, M là trung điểm của BC. Lấy các điểm D và E trên AB, AC sao cho \[\widehat {DME} = \widehat B\]
Chứng minh rằng \[\Delta MDE\sim\Delta DBM\]
Cho tam giác ABC vuông tại A. Kẻ đường cao AH của tam giác.
Chứng minh rằng: \(\Delta AHB\sim\Delta CAB\). Từ đó suy ra \(A{B^2} = HB.BC\)