Tìm tổng tất cả các giá trị của tham số m sao cho giá trị lớn nhất của hàm số y = trên đoạn [-1; 2] bằng 5.
A. -4
B. 2
C. 0
D . -2
+ Xét hàm số f(x) =x2- 2x trên đoạn [ -1; 2],
+ ta có đạo hàm f’(x) = 2( x-1) và f’( x) =0 khi x= 1
Vậy:
TH1: Với ,
ta có
TH2: Với
TH3: Với
( vô nghiệm)
Chọn D.
Cho hàm số y = . Với tham số m bằng bao nhiêu thì thỏa mãn trên đoạn [1; 2].
Cho hàm số f(x) = với m là tham số thực. Tìm tất cả các giá trị của m để hàm số có giá trị nhỏ nhất trên đoạn [0; 1] bằng – 2.
Cho hàm số y= f(x) xác định trên R và có đồ thị như hình bên. Hỏi phương trình f(|x-2|) = -1/2 có bao nhiêu nghiệm?
Cho hàm số y= f(x )= ax3+ bx2+ cx+ d có bảng biến thiên như sau:
Khi đó |f(x)| = m có 4 nghiệm phân biệt khi và chỉ khi
Tìm tất cả các giá trị thực của tham số m để hàm số y = liên tục và đạt cực tiểu trên [0;2] tại một điểm 0 < x0 < 2.
Hàm số y= 2x3-9x2+ 12x có đồ thị như hình vẽ bên. Tìm tất cả các giá trị của tham số m để phương trình có sáu nghiệm phân biệt.
Cho hàm số y= f(x) xác định trên R và có đồ thị như hình bên. Tìm tất cả các giá trị thực của tham số m để phương trình
2 - m = 0 có đúng bốn nghiệm phân biệt.
Cho hàm số f(x) = với m là tham số thực. Tìm tất cả các giá trị của m > 1 để hàm số có giá trị lớn nhất trên đoạn [ 0; 4] nhỏ hơn 3.
Hình vẽ bên là đồ thị của hàm số y= x3-3x-1. Tất cả các giá trị thực của m để phương trình có 3 nghiệm đôi một khác nhau là
Tìm tất cả các giá trị thực k đề phương trình = có đúng 4 nghiệm phân biệt.
Cho hàm số f(x) = x3 - 3x2 + 2 có đồ thị là đường cong trong hình bên. Tìm tất cả các giá trị thực của tham số m đề phương trình có nhiều nghiệm thực nhất
Cho hàm số y= f(x) xác định trên R và có đồ thị như hình bên. Hỏi với những giá trị nào của tham số thực m thì phương trình có đúng hai nghiệm phân biệt.
Cho hàm số y = x3- 3x + 1 . Tìm tìm tập hợp tất cả giá trị m> 0 , để giá trị nhỏ nhất của hàm số trên D = [m + 1; m + 2] luôn bé hơn 3 là:
Cho một tấm nhôm hình vuông cạnh 6 cm. Người ta muốn cắt một hình thang như hình vẽ. Tìm tổng x + y để dịnh tích hình thang EFGH đạt giá trị nhỏ nhất.