Từ một tấm tôn có kích thước 1m x 2m, người ta làm ra chiếc thùng đựng nước theo hai cách (xem hình minh họa dưới đây)
– Cách 1: làm ra thùng hình trụ có chiều cao 1m, bằng cách gò tấm tôn ban đầu thành mặt xung quanh của thùng.
– Cách 2: làm ra thùng hình hộp chữ nhật có chiều cao 1m, bằng cách chia tấm tôn ra thành 4 phần rồi gò thành các mặt bên của hình hộp chữ nhật.
Kí hiệu là thể tích của thùng được gò theo cách 1 và là thể tích của thùng được gò theo cách 2. Tính tỷ số .
Tính thể tích V của khối cầu ngoại tiếp hình lập phương cạnh a.
Cho hình chóp tam giác đều SABC có chiều cao 2a cạnh bên bằng a. Tính thể tích V của khối chóp SABC.
Cho hình chóp S.ABC có SA=SB=SC. Gọi O là hình chiếu của S lên mặt đáy ABC. Khẳng định nào sau đây đúng?
Cho hình chóp SABC có đáy là tam giác đều cạnh a, SA vuông góc với mặt phẳng đáy, góc giữa hai mặt phẳng (SBC) và (ABC) bằng . Tính thể tích V của khối chóp SABC.
Cho hình chóp S.ABCD có đáy là hình bình hành. Biết rằng, thể tích của khối chóp S.ABCD bằng và diện tích tam giác SAB bằng . Tính khoảng cách h giữa hai đường thẳng SA và CD.
Cho hình lăng trụ có thể tích bằng . Gọi M, N, P lần lượt là tâm của các mặt bên và G là trọng tâm tam giác ABC . Tính thể tích V của khối tứ diện GMNP.
Cho hình chóp S.ABC có đáy là tam giác vuông tại A, BC=2a; . Gọi M là trung điểm của BC, SA=SC=SM=. Tính khoảng cách từ điểm S tới mặt phẳng (ABC).
Cho hình chóp SABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với mặt phẳng đáy, SA = a. Thể tích V của khối chóp SBCD là.
Cho hình chóp SABC có đáy là tam giác vuông tại B, AC=2a, SA vuông góc với đáy, SA=a. Tính bán kính r của mặt cầu ngoại tiếp hình chóp SABC.
Trong không gian cho tam giác ABC vuông cân tại A, AB=a. Gọi H là trung điểm BC. Quay tam giác đó xung quanh trục AH, ta được một hình nón tròn xoay. Tính diện tích xung quanh của hình nón.
Cho hình chóp S.ABC có mặt bên SAB vuông góc với mặt phẳng đáy, tam giác SAB đều cạnh a, tam giác BAC vuông cân tại A. Tính khoảng cách h giữa hai đường thẳng AB và SC.
Cho hình chóp tứ giác S.ABCD có đáy là hình vuông cạnh bằng a, SA vuông góc với đáy, góc giữa SC và mặt đáy bằng . Tính thể tích của khối chóp S.ABCD.
Cho hình lập phương cạnh a. Gọi M, N, P lần lượt là trung điểm của Tính góc giữa hai đường thẳng MP và .
Cho tứ diện S.ABC có các tam giác SAB, SAC và ABC vuông cân tại A, SA=a. Gọi là góc giữa hai mặt phẳng (SBC) và (ABC) bằng
Tính thể tích V của khối nón có chiều cao a, độ dài đường sinh bằng 2a.