Tính tích phân
A.
B.
C.
D. ln6
Đáp án C
Tính diện tích hình phẳng giới hạn bởi parabol và đường thẳng y = x
Cho hàm số y = f(x) liên tục trên đoạn [a;b] Gọi D là hình phẳng giới hạn bởi đồ thị hàm số y = f(x) trục hoành và hai đường thẳng x=a; x=b (a<b). Diện tích hình phẳng D được tính bởi công thức.
Gọi (H) là hình phẳng giới hạn bởi đồ thị hàm số trục tung, trục hoành. Giá trị của k để đường thẳng d đi qua A(0;4) có hệ số góc k chia (H) thành 2 phần có diện tích bằng nhau là
Cho hình phẳng giới hạn bởi đồ thị hàm số và các đường thẳng y=0; x=1; x=4 Tính thể tích V của khối tròn xoay sinh ra khi cho hình (H) quanh xung quanh trục Ox.
Một cổng chào có dạng hình parabol chiều cao 18m, chiều rộng chân đế 12m. Người ta căng sợi dây trang trí AB, CD nằm ngang đồng thời chia hình giới hạn bởi parabol thành ba phần có diện tích bằng nhau (xem hình vẽ bên). Tỉ số bằng :
Cho hình phẳng (H) giới hạn bởi trục hoành, đồ thị của một parabol và một đường thẳng tiếp xúc parabol đó tại điểm A(2;4) như hình vẽ bên. Tính thể tích khối tròn xoay tạo bởi hình phẳng (H) khi quay xung quanh trục Ox.
Cho hai hàm số y = f(x) và y = g(x) liên tục trên đoạn [a;b] Gọi D là hình phẳng giới hạn bởi đồ thị hàm số đó và các đường thẳng x = a; x = b (a < b). Diện tích S của hình phẳng D được tính theo công thức
Cho vật thể có mặt đáy là hình tròn có bán kính bằng 1 (hình vẽ). Khi cắt vật thể bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x () thì được thiết diện là một tam giác đều. Tính thể tích V của vật thể đó
Cho hàm số y = f(x); y = g(x) liên tục trên [a;b] Gọi (H) là hình phẳng giới hạn bởi hai đồ thị y = f(x); y = g(x) và các đường thẳng x=a; x=b (a<b). Diện tích (H) được tính theo công thức
Cho hàm số f(x) có đạo hàm liên tục trên thỏa mãn ; Tính tích phân
Thể tích khối tròn xoay tạo thành khi quay hình phẳng giới hạn bởi các đường thẳng ; y = 0; x = 1 xung quanh trục Ox là
Cho hàm số f(x) liên tục trên đoạn [-6; 5] có đồ thị gồm hai đoạn thẳng và nửa đường tròn như hình vẽ. Tính giá trị