Cho nửa đường tròn đường kính AB=2R và điểm C thay đổi trên nửa đường tròn đó, đặt và gọi H là hình chiếu vuông góc của C lên AB. Tìm sao cho thể tích vật thể tròn xoay tạo thành khi quay tam giác ACH quanh trục AB đạt giá trị lớn nhất.
Cho hình trụ có chiều cao bằng cm. Biết rằng một mặt phẳng không vuông góc với đáy và cắt hai mặt đáy theo hai dây cung song song AB, A'B' mà AB=A'B'=6cm, diện tích tứ giác ABB'A' bằng 60. Tính bán kính đáy của hình trụ.
Cho tứ diện ABCD có AB=BC=CD=2, AC=BD=1, AD=. Tính bán kính của mặt cầu ngoại tiếp tứ diện đã cho.
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB=a, AD=2a tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Gọi M,N lần lượt là trung điểm các cạnh AD,DC. Tính bán kính R của mặt cầu ngoại tiếp hình chóp S.DMN.
Cắt một khối nón tròn xoay có bán kính đáy bằng R, đường sinh 2R bởi một mặt phẳng qua tâm đáy và tạo với mặt đáy một góc tính tỷ số thể tích của hai phần khối nón chia bởi mặt phẳng ?
Cho khối chóp S.ABCD có đáy là hình vuông, tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Mặt cầu ngoại tiếp khối chóp S.ABCD có diện tích . Khoảng cách giữa hai đường thẳng SA và BD.
Cho lăng trụ đứng có chiều cao bằng h không đổi, một đáy là tứ giác ABCD với A,B, C, D di động. Gọi I là giao của hai đường chéo AC và BD của tứ giác đó. Cho biết IA.IC=IB.ID=. Tính giá trị nhỏ nhất bán kính mặt cầu ngoại tiếp hình lăng trụ đã cho.
Khối cầu (S) có tâm, đường kính AB=2R. Cắt (S) bởi một mặt phẳng vuông góc với đường kính AB ta được thiết diện là hình tròn (C) rồi bỏ đi phần lớn hơn. Tính thể tích phần còn lại theo R, biết hình nón đỉnh I và đáy là hình tròn (C) có góc ở đỉnh bằng .
Cho tứ diện đều ABCD có một đường cao . Gọi I là trung điểm . Mặt phẳng (BCI) chia tứ diện ABCD thành hai tứ diện. Tính tỉ số hai bán kính của hai mặt cầu ngoại tiếp hai tứ diện đó.
Cho hình chóp S.ABC có đáy là tam giác vuông tại A, AB=a, AC=2a. Mặt bên (SAB), (SCA) lần lượt là các tam giác vuông tại B, C. Biết thể tích khối chóp S.ABC bằng . Bán kính mặt cầu ngoại tiếp hình chóp S.ABC?
Một hình hộp chữ nhật P nội tiếp trong một hình cầu có bán kính R. Tổng diện tích các mặt của P là 384 và tổng độ dài các cạnh của P là 112. Bán kính R của hình cầu là.
Cho hai mặt trụ có cùng bán kính bằng 4 được đặt lồng vào nhau như hình vẽ. Tính thể tích phần chung của chúng biết hai trục của hai mặt trụ vuông góc và cắt nhau.
Một khối cầu tâm I bán kính R bị cắt bởi một mặt phẳng (P) theo đường tròn giao tuyến (C), tạo thành hai khối chỏm cầu. Gọi M là điểm bất kỳ thuộc đường tròn (C), biết rằng góc giữa đường thẳng IM và mặt phẳng (P) bằng . Tính theo R thể tích khối chỏm cầu nhỏ tạo thành.
Cho hình chóp S.ABC có , AC=b, AB=c, . Gọi B', C' lần lượt là hình chiếu vuông góc của A lên SB, SC. Tính bán kính mặt cầu ngoại tiếp hình chóp A.BCC'B' theo b, c, .
Cho hình nón (N) có đường cao SO=h và bán kính đáy bằng R, gọi M là điểm trên đoạn SO, đặt OM=x, 0<x<h. (C) là thiết diện của mặt phẳng (P) vuông góc với trục SO tại M, với hình nón (N). Tìm x để thể tích khối nón đỉnh O đáy là (C) lớn nhất.
Tính thể tích V của khối nón ngoại tiếp hình tứ diện đều có cạnh bằng a (khối nón có đỉnh là một đỉnh của tứ diện và có đáy là hình tròn đi qua 3 đỉnh còn lại của tứ diện).