Cho hàm số y=f(x) có . Biết rằng f(0)=2018. Giá trị của biểu thức f(3)-f(1) bằng:
A. ln2
B. 2ln4
C. ln3
D. 2ln2
Cho hàm số f(x) có đạo hàm liên tục trên R và thỏa mãn . Cho biết f(0)=1 và . Tất cả các giá trị thực của tham số m để phương trình f(x)=m có hai nghiệm thực phân biệt là:
Biết F(x) là một nguyên hàm trên R của hàm số thỏa mãn F(1)=0. Tìm giá trị nhỏ nhất m của F(x)
Cho hàm số là một nguyên hàm của hàm số , hàm số f(x) có đạo hàm f’(x). Họ nguyên hàm của hàm số là:
Cho hàm số . Nếu F(x) là một nguyên hàm của hàm số f(x) và đồ thị hàm số y=F(x) đi qua thì là:
Cho hàm số f(x) xác định trên R\{-2 ;1} thỏa mãn và . Tính giá trị của biểu thức
Cho F(x) là một nguyên hàm của hàm số trên tập R và thỏa mãn . Tính tổng
Cho hàm số f(x) thỏa mãn và f(1)=1. Hỏi phương trình có bao nhiêu nghiệm?
Một đám vi trùng tại ngày thứ t có số lượng N (t), biết rằng và lúc đầu đám vi trùng có 250000 con. Hỏi sau 10 ngày số lượng vi trùng (lấy theo phần nguyên) là bao nhiêu?
Cho F(x) là một nguyên hàm của hàm số . Số giá trị của tham số m để và là