Cho mặt cầu (S) có đường kính 10 cm và mặt phẳng (P) cách tâm mặt cầu một khoảng 4 cm. Khẳng định nào sau đây sai?
A. (P) và (S) có vô số điểm chung
B. (P) và (S) theo một đường tròn bán kính 3 cm
C. (P) tiếp xúc với (S)
D. (P) cắt (S)
Mặt cầu (S) có đường kính là 10 cm, bán kính R = 5 cm.
Mà khoảng cách từ tâm của mặt cầu và mặt phẳng (P) là d = 4 cm < R
Do đó mặt phẳng (P) cắt (S) theo một đường tròn bán kính
Vậy trong 4 đáp án chỉ có đáp án C sai.
Đáp án cần chọn là: C
Cho hình chóp đều S.ABCD có cạnh đáy bằng a, cạnh bên b. Công thức tính bán kính mặt cầu ngoại tiếp khối chóp là:
Cho hình hộp chữ nhật ABCD.A’B’C’D’ có . Thể tích khối cầu ngoại tiếp hình hộp chữ nhật ABCD.A’B’C’D’ là:
Cho mặt cầu (S) và điểm A nằm ngoài mặt cầu, các điểm B, C, D, E lần lượt là các tiếp điểm của các tiếp tuyến kẻ từ A đến mặt cầu. Chọn mệnh đề đúng:
Cho mặt cầu (S) và điểm , (P) là tiếp diện của (S) tại A. Chọn mệnh đề sai:
Cho một mặt cầu bán kính bằng 2. Xét các hình chóp tam giác đều ngoại tiếp mặt cầu trên. Hỏi thể tích nhỏ nhất của chúng bằng bao nhiêu?
Một hình hộp chữ nhật có độ dài ba cạnh lần lượt là 2; 2; 1. Tính bán kính R của mặt cầu ngoại tiếp hình hộp chữ nhật trên.
Cho mặt cầu S(I;R) và mặt phẳng (P) cách l một khoảng bằng . Khi đó giao của (P) và (S) là đường tròn có chu vi bằng:
Cho mặt cầu (S) cố định và điểm A di chuyển trong không gian, vị trí của A để tập hợp các tiếp điểm của tiếp tuyến với mặt cầu kẻ từ A là đường tròn lớn là:
Cho hình chóp tam giác S.ABC có . Khi đó tâm mặt cầu ngoại tiếp hình chóp nằm trên đường thẳng nào?
Hình chóp S.ABC có đáy ABC là tam giác vuông tại A có SA vuông góc với mặt phẳng (ABC) và có . Mặt cầu đi qua các đỉnh A, B, C, S có bán kính R bằng:
Ba đoạn thẳng SA, SB, SC đôi một vuông góc tạo với nhau thành một tứ diện SABC với . Tính bán kính mặt cầu ngoại tiếp hình tứ diện đó là: