Cho hình trụ (T) có (C),(C') là hai đường tròn đáy nội tiếp hai mặt đối diện của một hình lập phương. Biết rằng, trong tam giác cong tạo bởi đường tròn (C) và hình vuông ngoại tiếp của (C) có một hình chữ nhậ kích thước 1 x 2 (như hình vẽ dưới đây). Thể tích của khối trụ (T) là
A.
B.
C.
D.
Gắn hệ trục tọa độ trong mặt phẳng chứa đường tròn (C) như hình vẽ.
Phương trình đường tròn (C):
Điểm
=> chiều cao của khối trụ h=2R=10
Thể tích khối trụ là:
Đáp án cần chọn là: A
Tứ diện ABCD có và góc giữa AD, BC bằng . Khi đó, bán kính mặt cầu ngoại tiếp tứ diện là:
Cho một khối trụ có độ dài đường sinh l và bán kính đường tròn đáy là r. Diện tích toàn phần của hình trụ là:
Cho tam giác nhọn ABC. Khi quay ABC quanh các cạnh BC, CA, AB ta được các hình tròn xoay có thể tích lần lượt là . Tính diện tích tam giác ABC?
Cho hình hộp chữ nhật ABCD.A’B’C’D’ có AB=a, AD=2a, AA'=2a. Tính bán kính R của mặt cầu ngoại tiếp tứ diện ABB’C’
Một hộp đựng phấn hình hộp chữ nhật có chiều dài 30 cm, chiều rộng 5 cm và chiều cao 6 cm. Người ta xếp thẳng đứng vào đó các viên phấn giống nhau, mỗi viên phấn là khối trụ có chiều cao h = 6 cm và bán kính đáy cm. Hỏi có thể xếp được tối đa bao nhiêu viên phấn.
Khi quay hình chữ nhật ABCD quanh các cạnh nào dưới đây ta được hai hình trụ có cùng chiều cao?
Cho hình nón có chiều cao bằng 40 cm. gười ta cắt hình nón bằng một mặt phẳng song song với đáy của nó để được một hình nón nhỏ có thể tích bằng thể tích . Tính chiều cao h của hình nón ?
Cho hình chóp S.ABC có SA vuông góc với đáy và . Biết bán kính mặt cầu ngoại tiếp hình chóp S.ABC bằng a. Tính độ dài cạnh BC.
Một cái phễu có dạng hình nón có chiều cao 15 cm. Người ta đổ một lượng nước vào phễu sao cho chiều cao của lượng nước trong phễu bằng chiều cao ban đầu của cái phễu (hình 1). Hỏi nếu bịt kín miệng phễu rồi lộn ngược phễu lên (hình 2) thì chiều cao của nước xấp xỉ bằng bao nhiêu (làm tròn đến hàng phần nghìn)
Cho khối (N) có bán kính đáy bằng 3 và diện tích xung quanh bằng . Tính thể tích V của khối nón (N)
Cần đẽo thanh gỗ hình hộp có đáy là hình vuông thành hình trụ có cùng chiều cao. Tỉ lệ thể tích khối gỗ cần phải đẽo đi ít nhất (tính gần đúng) là:
Cho hình trụ có chiều cao bằng cm. Biết rằng một mặt phẳng không vuông góc với đáy và cắt hai mặt đáy theo hai dây cung song song AB, CD mà AB=CD=6cm, diện tích tứ giác ABCD bằng . Tính bán kính đáy của hình trụ.
Một hình nón có thiết diện qua trục là tam giác đều cạnh a. Tính bán kính mặt cầu ngoại tiếp hình nón theo a.
Một hình hộp chữ nhật có độ dài 3 cạnh lần lượt là 2, 2, 1. Tính bán kính R mặt cầu ngoại tiếp hình hộp nói trên.
Cho hình chóp S.ABCD có , cạnh bên SA vuông góc với (ABCD), góc tạo bởi SC và đáy ABCD bằng , CD = a và tam giác ADC có diện tích bằng . Diện tích mặt cầu ngoại tiếp hình chóp S.ABCD là: