Cho phương trình – 2(m + 4)x + – 8 = 0. Xác định m để phương trình có hai nghiệm thỏa mãn đạt giá trị lớn nhất
A.
B.
C. m = 3
D. m = −3
Phương trình – 2(m + 4)x + – 8 = 0 có a = 1 ≠ 0 và
Phương trình có hai
Áp dụng định lý Vi – ét ta có
Ta có:
= 2 (m + 4) – 3 ( – 8) = -3 + 2m + 32 =
Nhận thấy và dấu “=” xảy ra khi (TM)
Vậy giá trị lớn nhất của A là khi
Đáp án: A
Gọi x1; x2 là nghiệm của phương trình . Không giải phương trình, tính giá trị của biểu thức
Tìm hai nghiệm của phương trình 18 + 23x + 5 = 0 sau đó phân tích đa thức A = 18 + 23x + 5 sau thành nhân tử
Gọi là nghiệm của phương trình . Không giải phương trình, tính giá trị của biểu thức
Gọi x1; x2 là nghiệm của phương trình . Không giải phương trình, tính giá trị của biểu thức
Giá trị nào dưới đây gần nhất với giá trị của m để có hai nghiệm thỏa mãn
Tìm các giá trị nguyên của m để phương trình − 6x + 2m + 1 = 0 có hai nghiệm dương phân biệt
Tìm các giá trị của m để phương trình (m – 1) + 3mx + 2m + 1 = 0 có hai nghiệm cùng dấu.
Hai số u = m; v = 1 – m là nghiệm của phương trình nào dưới đây?
Biết rằng phương trình – (m + 5)x + 3m + 6 = 0 luôn có hai nghiệm với mọi m. Tìm hệ thức liên hệ giữa hai nghiệm không phụ thuộc vào m.