Cho đường tròn (O) và điểm E nằm ngoài đường tròn. Vẽ cát tuyến EAB và ECD với đường tròn (A nằm giữa E và B, C nằm giữa E và D). Gọi F là một điểm trên đường tròn sao cho B nằm chính giữa cung DF, I là giao điểm của FA và BC. Biết = 25o, số đo góc là:
A. 20o
B. 50o
C. 25o
D. 30o
B nằm chính giữa cung DF nên sđ cung BD= sđ cung BF
Mặt khác góc tại E và I là hai góc có đỉnh bên ngoài đường tròn nên
= (sđ cung BD + sđ cung AC) = ( sđ cung BF - sđ cung AC) =
Theo đề bài ta có: = 25o
Đáp án cần chọn là: C
Cho (O; R) có hai đường kính AB, CD vuông góc với nhau. Gọi M là điểm chính giữa cung BC. Dây AM cắt OC tại E, dây CM cắt đường thẳng AB tại N. Tính diện tích tam giác CBN theo R
Trên (O) lấy bốn điểm A, B, C, D theo thứ tự sao cho cung AB = cung BC = cung CD. Gọi I là giao điểm của BD và AC, biết = 70o. Tính
Trên (O) lấy bốn điểm A, B, C, D theo thứ tự sao cho cung AB = cung BC = cung CD. Gọi I là giao điểm của BD và AC, biết = 80o. Tính
Cho tam giác ABC cân tại A, nội tiếp trong (O). Trên cung nhỏ AC, lấy điểm D. Gọi S là giao điểm của AD và BC, I là giao điểm của AC và BD. Khẳng định nào sau đây là đúng?
Trên đường tròn (O; R) vẽ ba dây liên tiếp bằng nhau AB = BC = CD, mỗi dây có độ dài nhỏ hơn R. Các đường thẳng AB, CD cắt nhau tại I, các tiếp tuyến của (O) tại B và D cắt nhau tại K. BC là tia phân giác của góc nào dưới đây?
Cho (O; R) có hai đường kính AB, CD vuông góc với nhau. Gọi M là điểm chính giữa cung BC. Dây AM cắt OC tại E, dây CM cắt đường thẳng AB tại N. Hai đoạn thẳng nào sau đây bằng nhau?
Cho (O; R) có hai đường kính AB, CD vuông góc với nhau. Gọi M là điểm chính giữa cung BC. Dây AM cắt OC tại E, dây CM cắt đường thẳng AB tại N. Số đo góc CNA bằng: