Chứng minh phân thức là tối giản với mọi số tự nhiên n
Hướng dẫn giải:
Gọi d là ƯCLN của 5n + 7 và 7n + 10
⇒ (5n + 7)⋮ d và (7n + 10)⋮ d
⇒ [7(5n + 7) - 5(7n + 10)] = -1⋮ d
⇒ d = 1 hoặc d = -1
Vậy phân thức đã cho tối giản với ∀n ∈ N
Chứng minh rằng với mọi số nguyên n thì phân số là phân số tối giản
Cho phân thức là phân thức tối giản. Chứng minh phân thức là phân thức tối giản