Chứng minh phân thức là tối giản với mọi số tự nhiên n
Hướng dẫn giải:
Gọi d là ƯCLN của 12n + 1 và 30n + 2
⇒ (12n + 1)⋮ d và (30n + 2)⋮ d
⇒ [5(12n + 1) - 2(30n + 2)] ⋮ d
⇒ 1 ⋮ d, với ∀n ∈ N
⇒ d = 1 hoặc d = -1
Vậy phân thức đã cho tối giản với ∀n ∈ N
Chứng minh rằng với mọi số nguyên n thì phân số là phân số tối giản
Cho phân thức là phân thức tối giản. Chứng minh phân thức là phân thức tối giản