Hình thang vuông ABCD có ; AB = AD = 3cm; CD = 6cm. Tính số đo góc B và C của hình thang ?
Kẻ BE ⊥ CD thì AD//BE do cùng vuông góc với CD
+ Hình thang ABED có cặp cạnh bên song song là hình bình hành.
Áp dụng tính chất của hình bình hành ta có
AD = BE = 3cm.
Xét Δ BEC vuông tại E có
⇒ Δ BEC là tam giác vuông cân tại E.
Số đo các góc của tứ giác ABCD theo tỷ lệ A:B:C:D = 4:3:2:1. Số đo các góc theo thứ tự đó là?
Tính chiều cao của hình thang cân ABCD, biết rằng cạnh bên AD = 5cm, cạnh đáy AB = 6cm và CD = 14cm.
Một hình thang có một cặp góc đối là và , cặp góc đối còn lại của hình thang đó là ?
Cho hình thang ABCD ( AB//CD ) có AB = 2cm, CD = 5cm, AD = 7cm. Gọi E là trung điểm của BC. Tính
Cho hình vuông ABCD cạnh bằng a. Trên hai cạnh BC, CD lấy lần lượt hai điểm M, N sao cho . Trên tia đối của của tia DC lấy điểm K sao cho DK = BM. Hãy tính : Chu vi tam giác MCN theo a.
Hai đường chéo của hình thoi có độ dài lần lượt là 8cm và 10cm. Độ dài cạnh của hình thoi đó là ?
Tính chiều cao BH của hình thang cân ABCD, biết AC ⊥ BD và hai cạnh đáy AB = a, CD = b. Từ đó suy ra cách vẽ hình.
Cho hình thang vuông ABCD có và CD = 2AB. Kẻ DE ⊥ AC, gọi I là trung điểm của EC. Chứng minh rằng .
Cho tam giác ABC có D, E lần lượt là trung điểm của AB, AC và DE = 4cm. Biết đường cao AH = 6cm. Diện tích của tam giác ABC là?
Cho tứ giác ABCD có . Các tia phân giác của các góc C và D cắt nhau tại O. Tính số đo góc ?
Cho hai điểm A, B cùng nằm trên một nửa mặt phẳng có bờ là đường thẳng d. Tìm trên d điểm M sao cho tổng MA + MB nhỏ nhất.
Cho hình vuông ABCD. Trên cạnh BC lấy điểm M, qua A kẻ AN ⊥ AM (điểm N thuộc tia đối của tia DC). Gọi I là trung điểm của MN. Chứng minh rằng: AM = AN
Hình thoi có độ dài các cạnh là 4cm thì chu vi của hình thoi là ?