Cho a, b, c là các số lớn hơn 1. Tìm giá trị nhỏ nhất của biểu thức:
P = .
Xét biểu thức với x > 1.
Dấu bằng xảy ra khi .
Áp dụng vào biểu thức P ta được:
P ≥ 4.1 + 4.2 + 4.3 = 4 + 8 + 12 = 24 khi a = b = c = 2.
Vậy giá trị nhỏ nhất của biểu thức P là 24 khi và chỉ khi a = b = c = 2.
Cho đường tròn (O; R), đường kính BC cố định và điểm A cố định thuộc đoạn thẳng OB (A không trùng với O và B). Kẻ dây PQ ⊥ BC tại A. Lấy M thuộc cung lớn PQ (M không trùng với C). Nối BM cắt PQ tại E. Chứng minh:
a. Tứ giác AEMC nội tiếp
b. BP2 = BE. BM = BA.BC
c. Từ E kẻ đường thẳng song song BC cắt PC tại I. Chứng minh: và tâm đường tròn ngoại tiếp tam giác EPM nằm trên một đường thẳng cố định khi M di chuyển trên cung lớn PQ.
Cho phương trình: m2x2 – 2(m + 1)x + 1 = 0 (m là tham số) (1)
a. Giải phương trình với m = 1.
b. Tìm m nguyên nhỏ nhất để phương trình (1) có hai nghiệm phân biệt.
Một khách du lịch đi trên ôtô 4 giờ, sau đó đi tiếp bằng tàu hỏa trong 7 giờ được quãng đường dài 640km. Hỏi vận tốc của tàu hỏa và ôtô, biết rằng mỗi giờ tàu hỏa đi nhanh hơn ôtô 5km?