Xét các số phức z thỏa mãn . Giá trị nhỏ nhất của biểu thức bằng
Phương pháp giải:
Bước 1: Tìm tập hợp biểu diễn số phức thỏa mãn |z−i|=|z+3i| và biểu diễn trên mặt phẳng tọa độ.
Bước 2: Biểu diễn số phức trên mặt phẳng tọa độ và tìm giá trị nhỏ nhất của
là độ dài đoạn thẳng nối hai điểm biểu diễn của z và z0
Giải chi tiết:
Bước 1: Tìm tập hợp biểu diễn số phức thỏa mãn và biểu diễn trên mặt phẳng tọa độ.
Gọi A(0;1) là điểm biểu diễn số phức i
B(0;−3) là điểm biểu diễn số phức −3i
M(a;b) là điểm biểu diễn số phức
Khi đó tương đương với điểm M là điểm thỏa mãn: MA=MB
Khi đó tập hợp điểm M là đường trung trực d của đoạn thẳng AB.
Gọi H là trung điểm của AB
Ta có đường thẳng .
Bước 2: Biểu diễn số phức trên mặt phẳng tọa độ và tìm giá trị nhỏ nhất của
Gọi C, D lần lượt là điểm biểu diễn số phức
Khi đó bài toán trở thành tìm giá trị nhỏ nhất của MC+MD.
Lấy điểm D’ đối xứng D qua d.
Đường thẳng DD’ qua D và vuông góc với đường thẳng d có phương trình là: x=3
⇒ Giao điểm của DD’ và d là K(3;-1)
K là trung điểm của DD’ nên D’(3;-5)
Vậy giá trị nhỏ nhất của là
Chọn A
Từ các chữ số 1, 2, 3, 4, 5, 6, 7, 8, 9 lập được bao nhiêu số tự nhiên gồm 3 chữ số đôi một khác nhau và số đó chia hết cho 3.
Trong hình vẽ, xe A kéo xe B bằng một sợi dây dài 39m qua một ròng rọc ở độ cao 12m. Xe A xuất phát từ N và chạy với vận tốc không đổi 2 m/s theo chiều mũi tên.
a) Đặt và , (đơn vị mét). Tìm một hệ thức liên hệ giữa x và y .
b) Tính vận tốc của xe B khi xe A cách N một đoạn 5m.
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và góc BAD = 60°. Hình chiếu vuông góc của S lên mặt phẳng đáy là trọng tâm G của tam giác BCD, góc giữa SA và đáy bằng 60°
a) Tính thể tích khối chóp S.ABCD.
b) Tính khoảng cách giữa hai đường thẳng AC và SB.
Một nhà máy sản xuất bóng đèn trang trí với chi phí sản xuất 12 USD mỗi bóng đèn. Nếu giá bán mỗi bóng đèn là 20 USD thì nhà máy dự tính bán được 2000 bóng mỗi tháng. Nếu cứ tăng giá bán mỗi bóng đèn lên 1 USD thì số bóng đèn bán được mỗi tháng giảm đi 100 bóng đèn. Để nhà máy có lợi nhuận lớn nhất, giá bán mỗi bóng đèn là
Gọi V1,V2, lần lượt là thể tích của khối tứ diện đều và khối lập phương có chung mặt cầu
ngoại tiếp. Khi đó, bằng
Một ô tô đang chạy thì người lái đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc trong đó t (giây) là khoảng thời gian tính từ lúc bắt đầu đạp phanh và a là một hằng số dương. Biết rằng từ lúc đạp phanh đến khi dừng hẳn, ô tô di chuyển được 36m. Khẳng định nào sau đây đúng?
Cho hình chóp S.ABC có đáy là tam giác đều cạnh a. Biết với H thuộc cạnh AB thỏa mãn AB=3AH. Góc tạo bởi SA và mặt phẳng (ABC) bằng . Khoảng cách giữa hai đường thẳng SA và BC là
Một lô hàng có 30 sản phẩm trong đó có 5 phế phẩm. Lấy ngẫu nhiên đồng thời 6 sản phẩm của lô hàng đó. Xác suất để trong 6 sản phẩm lấy ra có không quá 2 phế phẩm là
Trong không gian với hệ trục tọa độ vuông góc Oxyz, cho đường thẳng và mặt phẳng . Phương trình đường thẳng d’ đối xứng với d qua (P) là
Trong không gian với hệ trục tọa độ vuông góc Oxyz, cho 4 điểm A(1;5;4), B(-3;1;4),
C(5;4;1), D(-2;1;-3). Bán kính mặt cầu ngoại tiếp tứ diện ABCD bằng
Cho hàm số y = f(x) liên tục trên R và có đồ thị như hình vẽ. Số các giá trị nguyên của m để phương trình có đúng ba nghiệm phân biệt thuộc đoạn là
Trong không gian với hệ trục tọa độ vuông góc Oxyz, cho mặt phẳng , mặt cầu . Gọi là đường thẳng nằm trong mặt phẳng P, đi qua và cắt (S) tại 2 điểm M, N. Độ dài đoạn thẳng MN nhỏ nhất là