Trong mặt phẳng với hệ trục tọa độ Oxy, cho đường thẳng \[(d):3x - 4y - 12 = 0\]Phương trình đường thẳng \[\left( \Delta \right)\;\]đi qua M(2;−1) và tạo với (d) một góc \[{45^o}\] có dạng \[ax + by + 5 = 0\], trong đó a,b cùng dấu. Khẳng định nào sau đây đúng?
A.\[a + b = 6\]
B.\[a + b = - 8\]
C.\[a + b = 8\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;{\rm{ }}\;\;\]
D.\[a + b = - 6\]
Đường thẳng (d) có VTPT\[\overrightarrow {{n_1}} = \left( {3; - 4} \right)\]
Đường thẳng \[\left( {\rm{\Delta }} \right)\]có VTPT\[\overrightarrow {{n_2}} = \left( {a;b} \right)\]
\[ \Rightarrow cos(d;\Delta ) = cos\left( {\overrightarrow {{n_1}} ;\overrightarrow {{n_2}} } \right) = \frac{{\left| {\overrightarrow {{n_1}} .\overrightarrow {{n_2}} } \right|}}{{\left| {\overrightarrow {{n_1}} } \right|.\left| {\overrightarrow {{n_2}} } \right|}} = \frac{{|3a - 4b|}}{{5\sqrt {{a^2} + {b^2}} }}\]
\[ \Leftrightarrow cos{45^o} = \frac{{|3a - 4b|}}{{5\sqrt {{a^2} + {b^2}} }} \Leftrightarrow \frac{{|3a - 4b|}}{{5\sqrt {{a^2} + {b^2}} }} = \frac{{\sqrt 2 }}{2}\]
\[ \Leftrightarrow \sqrt 2 |3a - 4b| = 5\sqrt {{a^2} + {b^2}} \Leftrightarrow 2{(3a - 4b)^2} = 25({a^2} + {b^2})\]
\[ \Leftrightarrow 7{a^2} + 48ab - 7{b^2} = 0(1)\]
Mặt khác\[M\left( {2; - 1} \right) \in {\rm{\Delta }} \Rightarrow 2a - b + 5 = 0 \Leftrightarrow b = 2a + 5\]thế vào (1)
\[ \Rightarrow 7{a^2} + 48a(2a + 5) - 7{(2a + 5)^2} = 0 \Leftrightarrow 75{a^2} + 100a\]
\[ - 175 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{a = 1 \Rightarrow b = 7(tm)}\\{a = - \frac{7}{3} \Rightarrow b = \frac{1}{3}(ktm)}\end{array}} \right.\]
\[ \Rightarrow a + b = 8.\]
Đáp án cần chọn là: C
Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng đi qua hai điểm A(1;2), B(4;6), tìm tọa độ điểm M trên trục Oy sao cho diện tích \[\Delta MAB\] bằng 1.
Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(1;2), B(0;3) và C(4;0). Chiều cao của tam giác kẻ từ đỉnh A bằng:
Trong mặt phẳng với hệ toạ độ Oxy, cho 4 điểm A(1;0),B(−2;4),C(−1;4),D(3;5). Tìm toạ độ điểm M thuộc đường thẳng \[\left( \Delta \right):3x - y - 5 = 0\;\]sao cho hai tam giác MAB,MCD có diện tích bằng nhau.
Trong mặt phẳng với hệ tọa độ Oxy, cho điểm M(x0;y0) và đường thẳng \[\Delta :ax + by + c = 0\]. Khoảng cách từ điểm M đến \[\Delta \] được tính bằng công thức:
Tìm tất cả các giá trị của tham số m để khoảng cách từ điểm A(−1;2) đến đường thẳng \[\Delta :mx + y - m + 4 = 0\;\] bằng \[2\sqrt 5 \].
Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(3;−4), B(1;5) và C(3;1). Tính diện tích tam giác ABC.
Trong mặt phẳng với hệ toạ độ Oxy, cho tam giác ABC có phương trình đường phân giác trong góc A là d1:x+y+2=0, phương trình đường cao vẽ từ B là d2:2x−y+1=0, cạnh AB đi qua M(1;−1). Tìm phương trình cạnh AC.
Trên mặt phẳng tọa độOxy, cho tam giác ABC có tọa độ các đỉnh là A(2;3),B(5;0) và C(−1;0). Tìm tọa độ điểm M thuộc cạnh BC sao cho diện tích tam giác MAB bằng hai lần diện tích tam giác MAC
Trong mặt phẳng Oxy cho điểm A(−1;2);B(3;4) và đường thẳng \[{\rm{\Delta }}:\,\,x - 2y - 2 = 0\]. Tìm điểm \[M \in \Delta \] sao cho \[2A{M^2} + M{B^2}\] có giá trị nhỏ nhất.
Cho hai đường thẳng \[{d_1}:3x + 4y + 12 = 0\] và \[{d_2}:\left\{ {\begin{array}{*{20}{c}}{x = 2 + at}\\{y = 1 - 2t}\end{array}} \right.\]. Tìm các giá trị của tham số a để d1 và d2 hợp với nhau một góc bằng 450.
Cho đường thẳng \[{d_1}:x + 2y - 7 = 0\] và \[{d_2}:2x - 4y + 9 = 0\]. Tính cosin của góc tạo bởi giữa hai đường thẳng đã cho.
Khoảng cách từ giao điểm của hai đường thẳng \[x - 3y + 4 = 0\] và \[2x + 3y - 1 = 0\;\]đến đường thẳng \[\Delta :3x + y + 4 = 0\;\] bằng:
Lập phương trình đường thẳng (Δ) đi qua M(2;7) và cách N(1;2) một khoảng bằng 1.
Trong mặt phẳng với hệ tọa độ Oxy, cho \[\Delta ABC\] cân có đáy là BC.BC. Đỉnh A có tọa độ là các số dương, hai điểm B và C nằm trên trục Ox, phương trình cạnh AB: \[y = 3\sqrt 7 (x - 1)\] Biết chu vi của \[\Delta ABC\] bằng 18, tìm tọa độ các đỉnh A,B,C.
Lập phương trình đường phân giác trong của góc A của ΔABC biết A(2;0);B(4;1);C(1;2)