Nghiệm của phương trình \[{\sin ^2}x - \sin x = 0\] thỏa điều kiện: \[0 < x < \pi .\]
A.\[x = \frac{\pi }{2}\]
B. \[x = \pi \]
C. \[x = 0\]
D. \[x = - \frac{\pi }{2}\]
Bước 1:
\[si{n^2}x - sinx = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{sinx = 0}\\{sinx = 1}\end{array}} \right.\]
Bước 2:
\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = k\pi }\\{x = \frac{\pi }{2} + k2\pi }\end{array}} \right.(k \in \mathbb{Z})\)
Bước 3:
Xét\[x = k\pi ,k \in \mathbb{Z}\]
Vì\[0 < x < \pi \] nên nghiệm của phương trình thỏa mãn:
\[0 < k\pi < \pi \Leftrightarrow 0 < k < 1\]
Ta không thể tìm được số nguyên nào thỏa mãn điều trên
=>Không có số k trong trường hợp này.
Xét\[x = \frac{\pi }{2} + k2\pi ,k \in \mathbb{Z}\]
Vì\[0 < x < \pi \]nên nghiệm của phương trình thỏa mãn:
\[0 < \frac{\pi }{2} + k2\pi < \pi \Leftrightarrow - \frac{\pi }{2} < k2\pi < \frac{\pi }{2}\]
\[ \Leftrightarrow - \frac{1}{4} < k < \frac{1}{4}\]mà\[k \in \mathbb{Z} \Rightarrow k = 0\]Thay vào x ta được:
\[x = \frac{\pi }{2} + 0 = \frac{\pi }{2}\]
Vậy phương trình có 1 nghiệm duy nhất là \[x = \frac{\pi }{2}\]
Đáp án cần chọn là: A
Phương trình lượng giác \[\frac{{\cos x - \frac{{\sqrt 3 }}{2}}}{{\sin x - \frac{1}{2}}} = 0\] có nghiệm là:
Nghiệm của phương trình \[\tan \left( {2x - {{15}^0}} \right) = 1\], với \[ - {90^0} < x < {90^0}\;\]là:
Phương trình \[\tan \left( {\frac{\pi }{2} - x} \right) + 2\tan \left( {2x + \frac{\pi }{2}} \right) = 1\] có nghiệm là:
Phương trình \[\cos 3x = 2{m^2} - 3m + 1\]. Xác định mm để phương trình có nghiệm \[x \in (0;\frac{\pi }{6}]\]
Phương trình \[\cot 20x = 1\] có bao nhiêu nghiệm thuộc khoảng \[\left[ { - 50\pi ;0} \right]?\]
Với giá trị nào của m dưới đây thì phương trình sinx = m có nghiệm?
Giải phương trình lượng giác \[\sin \left( {\frac{\pi }{3} - 3x} \right) = \sin \left( {x + \frac{\pi }{4}} \right)\] có nghiệm là:
Số nghiệm của phương trình \[2\sin \left( {x + \frac{\pi }{4}} \right) - 2 = 0\]với \[\pi \le x \le 5\pi \]là:
Phương trình \[\sin \left( {2x + \frac{\pi }{7}} \right) = {m^2} - 3m + 3\] vô nghiệm khi:
Số nghiệm của phương trình \[\cos 2x = \frac{1}{2}\] trên nửa khoảng \[({0^0};{36^0}]\;\]là?
Nghiệm của phương trình \[\sin x = \frac{1}{2}\] thỏa mãn \[ - \frac{\pi }{2} \le x \le \frac{\pi }{2}\] là: