Chủ nhật, 12/01/2025
IMG-LOGO

Câu hỏi:

20/07/2024 110

Giải phương trình \[\cos 2x + \cos 4x + \cos 6x = \cos x\cos 2x\cos 3x + 2\]

A.\[x = k\pi \,\,\left( {k \in \mathbb{Z}} \right)\]

Đáp án chính xác

B. \[x = \frac{{2\pi }}{3} + 2k\pi \,\,\left( {k \in \mathbb{Z}} \right)\]

C. \[x = \frac{\pi }{3} + 2k\pi \,\,\left( {k \in \mathbb{Z}} \right)\]

D. \[x = \frac{{k\pi }}{3}\,\,\left( {k \in \mathbb{Z}} \right)\]

Trả lời:

verified Giải bởi qa.haylamdo.com

\[cos2x + cos4x + cos6x = cosxcos2xcos3x + 2\]

\[ \Leftrightarrow 2cos4xcos2x + cos4x = \frac{1}{2}cos2x(cos4x + cos2x) + 2\]

\[ \Leftrightarrow 2cos4xcos2x + cos4x = \frac{1}{2}cos2xcos4x + \frac{1}{2}co{s^2}2x + 2\]

\[ \Leftrightarrow \frac{3}{2}cos4xcos2x + cos4x = \frac{1}{2}co{s^2}2x + 2\]

\[ \Leftrightarrow 3cos4xcos2x + 2cos4x = co{s^2}2x + 4\]

\[ \Leftrightarrow 3(2co{s^2}2x - 1)cos2x + 2(2co{s^2}2x - 1) = co{s^2}2x + 4\]

\[ \Leftrightarrow 6co{s^3}2x - 3cos2x + 4co{s^2}2x - 2 = co{s^2}2x + 4\]

\[ \Leftrightarrow 6co{s^3}2x + 3co{s^2}2x - 3cos2x - 6 = 0\]

\[ \Leftrightarrow 2co{s^3}2x + co{s^2}2x - cos2x - 2 = 0\]

\[ \Leftrightarrow 2(co{s^3}2x - 1) + cos2x(cos2x - 1) = 0\]

\[ \Leftrightarrow 2(cos2x - 1)(co{s^2}2x + cos2x + 1) + cos2x(cos2x - 1) = 0\]

\[ \Leftrightarrow (cos2x - 1)(2co{s^2}2x + 2cos2x + 2 + cos2x) = 0\]

\[ \Leftrightarrow (cos2x - 1)(2co{s^2}2x + 3cos2x + 2) = 0\]

\[ \Leftrightarrow cos2x = 1 \Leftrightarrow 2x = k2\pi \Leftrightarrow x = k\pi (k \in \mathbb{Z})\]

Vậy nghiệm của phương trình đã cho là: \[x = k\pi \,\,\left( {k \in \mathbb{Z}} \right)\]

Đáp án cần chọn là: A

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Giải phương trình \[8\sin x = \frac{{\sqrt 3 }}{{\cos x}} + \frac{1}{{\sin x}}\]

Xem đáp án » 05/07/2022 236

Câu 2:

Với giá trị nào của m thì phương trình \[\sqrt 3 \sin 2x - m\cos 2x = 1\]luôn có nghiệm?

Xem đáp án » 05/07/2022 223

Câu 3:

Giải phương trình \[\sqrt 3 \cos 5x - 2\sin 3x\cos 2x - \sin x = 0\] ta được nghiệm:

Xem đáp án » 05/07/2022 219

Câu 4:

Để phương trình \[\frac{{{a^2}}}{{1 - {{\tan }^2}x}} = \frac{{{{\sin }^2}x + {a^2} - 2}}{{\cos 2x}}\] có nghiệm, tham số phải thỏa mãn điều kiện:

Xem đáp án » 05/07/2022 213

Câu 5:

Nghiệm của phương trình \[4{\sin ^2}2x + 8{\cos ^2}x - 9 = 0\] là:

Xem đáp án » 05/07/2022 213

Câu 6:

Giải phương trình \[\cos 3x\tan 5x = \sin 7x\]

Xem đáp án » 05/07/2022 212

Câu 7:

Phương trình \[\sin x + \sqrt 3 \cos x = \sqrt 2 \]  có hai họ nghiệm có dạng \[x = \alpha + k2\pi ,x = \beta + k2\pi ,\]\[( - \frac{\pi }{2} < \alpha < \beta < \frac{\pi }{2})\;\]. Khi đó \[\alpha .\beta \;\] là:

Xem đáp án » 05/07/2022 211

Câu 8:

Giải phương trình \[\sin 3x - \frac{2}{{\sqrt 3 }}{\sin ^2}x = 2\sin x\cos 2x\].

Xem đáp án » 05/07/2022 207

Câu 9:

Giải phương trình \[\sin 18x\cos 13x = \sin 9x\cos 4x\]

Xem đáp án » 05/07/2022 204

Câu 10:

Các giá trị nguyên dương nhỏ hơn 5 của m để phương trình \[\tan x + \cot x = m\] có nghiệm \[x \in (0;\frac{\pi }{2})\;\] có tổng là:

Xem đáp án » 05/07/2022 202

Câu 11:

Phương trình \[6{\sin ^2}x + 7\sqrt 3 \sin 2x - 8{\cos ^2}x = 6\] có nghiệm là:

Xem đáp án » 05/07/2022 199

Câu 12:

Phương trình \[{\sin ^2}3x + \left( {{m^2} - 3} \right)\sin 3x + {m^2} - 4 = 0\] khi m=1 có nghiệm là:

Xem đáp án » 05/07/2022 198

Câu 13:

Giải phương trình \[1 + \sin x + \cos 3x = \cos x + \sin 2x + \cos 2x\]

Xem đáp án » 05/07/2022 195

Câu 14:

Giải phương trình \[\cos x + \cos 3x + 2\cos 5x = 0\]

Xem đáp án » 05/07/2022 195

Câu 15:

Phương trình \[\sqrt 3 \sin 2x - \cos 2x + 1 = 0\] có nghiệm là:

Xem đáp án » 05/07/2022 184

Câu hỏi mới nhất

Xem thêm »
Xem thêm »