Chủ nhật, 12/01/2025
IMG-LOGO

Câu hỏi:

18/07/2024 202

Tìm x, y, z biết : \[\frac{x}{3} = \frac{y}{4},\frac{y}{3} = \frac{z}{5}\] và \[2x - 3y + z = 6\]

Trả lời:

verified Giải bởi qa.haylamdo.com

Giải

Tìm cách giải. Từ hai tỉ lệ thức của giả thiết ,ta cần nối lại tạo thành dãy tỉ số bằng nhau. Quan sát hai tỉ lệ thức ta thấy chúng có chung y vì vậy khi nối cần tạo thành phần chứa y giống nhau. Sau đó vẫn ý tưởng như ví dụ trên, chúng ta có 3 cách giải.

  • Cách 1. Đặt hệ số tỉ lệ k làm ẩn phụ. Biểu thị x, y, z theo hệ số tỉ lệ k.
  • Cách 2. Sử dụng tính chất dãy tỉ số bằng nhau.
  • Cách 3. Biểu diễn x, y theo z từ dãy tỉ số bằng nhau.

ü  Trình bày lời giải

+ Cách 1. Từ giả thiết : \[\frac{x}{3} = \frac{y}{4} \Rightarrow \frac{x}{9} = \frac{y}{{12}}\left( 1 \right)\]

\[\frac{y}{3} = \frac{z}{5} \Rightarrow \frac{y}{{12}} = \frac{z}{{20}}\left( 2 \right)\]

Từ (1) và (2) , suy ra : \[\frac{x}{9} = \frac{y}{{12}} = \frac{z}{{20}}\left( * \right)\]

Ta đặt \[\frac{x}{9} = \frac{y}{{12}} = \frac{z}{{20}} = k\] suy ra \[x = 9k;y = 12k;z = 20k\]

Theo giả thiết : \[2x - 3y + z = 6 \Rightarrow 18k - 26k + 20k = 6 \Rightarrow 2k = 6 \Rightarrow k = 3\]

Do đó: \[x = 27,y = 36,z = 60\].

+ Cách 2. Chúng ta biến đổi giả thiết như cách 1 đến (*)

Theo tính chất dãy tỉ số bằng nhau, ta có :

\[\frac{x}{9} = \frac{y}{{12}} = \frac{z}{{20}} = \frac{{2x}}{{18}} = \frac{{3y}}{{36}} = \frac{z}{{20}} = \frac{{2x - 3y + z}}{{18 - 36 + 20}} = \frac{6}{2} = 3\]

Do đó: \[\frac{x}{9} = 3 \Rightarrow x = 27\]

            \[\frac{y}{{12}} = 3 \Rightarrow y = 36\]

            \[\frac{z}{{20}} = 3 \Rightarrow z = 60\]

Kết luận : \[x = 27,y = 36,z = 60\].

+ Cách 3. (phương pháp thế : ta tính x, y theo z)

Từ giả thiết : \[\frac{y}{3} = \frac{z}{5} \Rightarrow y = \frac{{3z}}{5};\frac{x}{3} = \frac{y}{4} \Rightarrow x = \frac{{3y}}{4} = \frac{{3.\frac{{3z}}{5}}}{4} = \frac{{9z}}{{20}}\]

Mà \[2x - 3y + z = 6 \Rightarrow 2.\frac{{9z}}{{20}} - 3.\frac{{3z}}{5} + z = 6 \Rightarrow \frac{z}{{10}} = 60 \Rightarrow z = 60\]

Suy ra : \[y = \frac{{3.60}}{5} = 36,x = \frac{{9.60}}{{20}} = 27\]

Kết luận : \[x = 27,y = 36,z = 60\]

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho a, b, c, d khác 0 ,thỏa mãn tỉ lệ thức \[\frac{{21a + 10b}}{{a - 11b}} = \frac{{21c + 10d}}{{c - 11d}}\]

Chứng minh rằng \[\frac{a}{b} = \frac{c}{d}\]

Xem đáp án » 19/10/2022 486

Câu 2:

Tìm hai số x và y biết \[\frac{x}{2} = \frac{y}{3}\] và \[xy = 24\]

Xem đáp án » 19/10/2022 191

Câu 3:

Cho \[\frac{a}{b} = \frac{c}{d}\]. Các số x, y, z, t thỏa mãn \[xa + yb \ne 0\] và \[zc + td \ne 0\]

Chứng minh \[\frac{{xa + yb}}{{za + tb}} = \frac{{xc + yd}}{{zc + td}}\]

Xem đáp án » 19/10/2022 187

Câu 4:

Tìm hai số x và y biết x/3 = y/4 và 2x + 3y = 36

Xem đáp án » 19/10/2022 182

Câu 5:

Cho tỉ lệ thức \[\frac{{3x - y}}{{x + y}} = \frac{3}{4}\]. Tính giá trị của tỉ số \[\frac{x}{y}\]

Xem đáp án » 19/10/2022 180

Câu 6:

Cho \[a + b + c = {a^2} + {b^2} + {c^2} = 1\] và \[\frac{x}{a} = \frac{y}{b} = \frac{z}{c}\].

 Chứng minh rằng:\[{\left( {x + y + z} \right)^2} = {x^2} + {y^2} + {z^2}\]

Xem đáp án » 19/10/2022 177

Câu 7:

Cho a, b, c thỏa mãn \[\frac{a}{{2016}} = \frac{b}{{2018}} = \frac{c}{{2020}}\].  Chứng minh rằng :\[\frac{{{{\left( {a - c} \right)}^2}}}{4} = \left( {a - b} \right)\left( {b - c} \right)\]

Xem đáp án » 19/10/2022 163

Câu 8:

Cho \[\frac{x}{{y + z + t}} = \frac{y}{{z + t + x}} = \frac{z}{{t + x + y}} = \frac{t}{{x + y + z}}\]. Chứng minh rằng biểu thức sau có giá trị nguyên \[A = \frac{{x + y}}{{z + t}} + \frac{{y + z}}{{t + x}} + \frac{{z + t}}{{x + y}} + \frac{{t + x}}{{y + z}}\]

Xem đáp án » 19/10/2022 159

Câu 9:

Cho dãy tỉ số bằng nhau : \[\frac{{{a_1}}}{{{a_2}}} = \frac{{{a_2}}}{{{a_3}}} = ... = \frac{{{a_{2019}}}}{{{a_{2020}}}} = \frac{{{a_{2020}}}}{{{a_1}}}\]

Tính giá trị biểu thức \[B = \frac{{{{\left( {{a_1} + {a_2} + ... + {a_{2020}}} \right)}^2}}}{{{a_1}^2 + {a_2}^2 + {a_3}^2 + ... + {a_{2020}}^2}}\]

Xem đáp án » 19/10/2022 151

Câu 10:

Cho a, b, c, d khác 0 và không đối nhau từng đôi một, thỏa mãn dãy tỷ số bằng nhau :

\[\frac{{2021a + b + c + d}}{a} = \frac{{a + 2021b + c + d}}{b} = \frac{{a + b + 2021c + d}}{c} = \frac{{a + b + c + 2021d}}{d}\]

Tính \[M = \frac{{a + b}}{{c + d}} + \frac{{b + c}}{{d + a}} + \frac{{c + d}}{{a + b}} + \frac{{d + a}}{{b + c}}\]

Xem đáp án » 19/10/2022 146

Câu 11:

Tìm các số x, y, z biết rằng:

\[x:y:z = 3:4:5\] và \[5{z^2} - 3{x^2} - 2{y^2} = 594\]

Xem đáp án » 19/10/2022 141

Câu 12:

\[\frac{{xy + 1}}{9} = \frac{{xz + 2}}{{15}} = \frac{{yz + 3}}{{27}}\] và \[xy + yz + zx = 11\]

Xem đáp án » 19/10/2022 139

Câu 13:

Tìm x, y biết :

\[\frac{{1 + 3y}}{{12}} = \frac{{1 + 5y}}{{5x}} = \frac{{1 + 7y}}{{4x}}\]

Xem đáp án » 19/10/2022 138

Câu 14:

Tìm x, y biết :

\[\frac{{1 + 2y}}{{18}} = \frac{{1 + 4y}}{{24}} = \frac{{1 + 6y}}{{6x}};\]

Xem đáp án » 19/10/2022 132

Câu 15:

Với a, b, c, x, y, z khác 0 , biết \[\frac{{bz - cy}}{a} = \frac{{cx - az}}{b} = \frac{{ay - bx}}{c}\]

Chứng minh rằng : \[\frac{a}{x} = \frac{b}{y} = \frac{c}{z}\]

Xem đáp án » 19/10/2022 127

Câu hỏi mới nhất

Xem thêm »
Xem thêm »