Chủ nhật, 12/01/2025
IMG-LOGO

Câu hỏi:

20/07/2024 192

Tìm hai số x và y biết \[\frac{x}{2} = \frac{y}{3}\] và \[xy = 24\]

Trả lời:

verified Giải bởi qa.haylamdo.com

Giải

Đặt \[\frac{x}{2} = \frac{y}{3} = k\] suy ra : \[x = 2k,y = 3k\]

Theo giả thiết : \[xy = 24 \Rightarrow 2k.3k = 24 \Rightarrow {k^2} = 4 \Rightarrow k = \pm 2\]

+ Với \[k = 2\]thì \[x = 4;y = 6\]

+ Với \[k = - 2\] thì \[x = - 4;y = - 6\]

Kết luận.  Vậy \[\left( {x;y} \right)\] là \[\left( { - 4; - 6} \right),\left( {4;6} \right)\].

Nhận xét. Trong ví dụ này có thể chúng ta mắc sai lầm sau :

+ Thứ nhất trong lời giải trên thiếu trường hợp \[k = - 2\]

+ Thứ hai chúng ta vận dụng tính chất : \[\frac{x}{2} = \frac{y}{3} = \frac{{xy}}{{2.3}} = \frac{{24}}{6} = 4!\] Chúng ta lưu ý rằng tính chất dãy tỉ số bằng nhau không cho phép nhân (hoặc chia) tử thức với nhau. Do vậy gặp điều kiện về phép nhân hoặc lũy thừa giữa các biến, chúng ta nên đặt hệ số tỉ lệ k làm ẩn phụ

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho a, b, c, d khác 0 ,thỏa mãn tỉ lệ thức \[\frac{{21a + 10b}}{{a - 11b}} = \frac{{21c + 10d}}{{c - 11d}}\]

Chứng minh rằng \[\frac{a}{b} = \frac{c}{d}\]

Xem đáp án » 19/10/2022 486

Câu 2:

Tìm x, y, z biết : \[\frac{x}{3} = \frac{y}{4},\frac{y}{3} = \frac{z}{5}\] và \[2x - 3y + z = 6\]

Xem đáp án » 19/10/2022 202

Câu 3:

Cho \[\frac{a}{b} = \frac{c}{d}\]. Các số x, y, z, t thỏa mãn \[xa + yb \ne 0\] và \[zc + td \ne 0\]

Chứng minh \[\frac{{xa + yb}}{{za + tb}} = \frac{{xc + yd}}{{zc + td}}\]

Xem đáp án » 19/10/2022 187

Câu 4:

Tìm hai số x và y biết x/3 = y/4 và 2x + 3y = 36

Xem đáp án » 19/10/2022 182

Câu 5:

Cho tỉ lệ thức \[\frac{{3x - y}}{{x + y}} = \frac{3}{4}\]. Tính giá trị của tỉ số \[\frac{x}{y}\]

Xem đáp án » 19/10/2022 180

Câu 6:

Cho \[a + b + c = {a^2} + {b^2} + {c^2} = 1\] và \[\frac{x}{a} = \frac{y}{b} = \frac{z}{c}\].

 Chứng minh rằng:\[{\left( {x + y + z} \right)^2} = {x^2} + {y^2} + {z^2}\]

Xem đáp án » 19/10/2022 177

Câu 7:

Cho a, b, c thỏa mãn \[\frac{a}{{2016}} = \frac{b}{{2018}} = \frac{c}{{2020}}\].  Chứng minh rằng :\[\frac{{{{\left( {a - c} \right)}^2}}}{4} = \left( {a - b} \right)\left( {b - c} \right)\]

Xem đáp án » 19/10/2022 163

Câu 8:

Cho \[\frac{x}{{y + z + t}} = \frac{y}{{z + t + x}} = \frac{z}{{t + x + y}} = \frac{t}{{x + y + z}}\]. Chứng minh rằng biểu thức sau có giá trị nguyên \[A = \frac{{x + y}}{{z + t}} + \frac{{y + z}}{{t + x}} + \frac{{z + t}}{{x + y}} + \frac{{t + x}}{{y + z}}\]

Xem đáp án » 19/10/2022 159

Câu 9:

Cho dãy tỉ số bằng nhau : \[\frac{{{a_1}}}{{{a_2}}} = \frac{{{a_2}}}{{{a_3}}} = ... = \frac{{{a_{2019}}}}{{{a_{2020}}}} = \frac{{{a_{2020}}}}{{{a_1}}}\]

Tính giá trị biểu thức \[B = \frac{{{{\left( {{a_1} + {a_2} + ... + {a_{2020}}} \right)}^2}}}{{{a_1}^2 + {a_2}^2 + {a_3}^2 + ... + {a_{2020}}^2}}\]

Xem đáp án » 19/10/2022 151

Câu 10:

Cho a, b, c, d khác 0 và không đối nhau từng đôi một, thỏa mãn dãy tỷ số bằng nhau :

\[\frac{{2021a + b + c + d}}{a} = \frac{{a + 2021b + c + d}}{b} = \frac{{a + b + 2021c + d}}{c} = \frac{{a + b + c + 2021d}}{d}\]

Tính \[M = \frac{{a + b}}{{c + d}} + \frac{{b + c}}{{d + a}} + \frac{{c + d}}{{a + b}} + \frac{{d + a}}{{b + c}}\]

Xem đáp án » 19/10/2022 146

Câu 11:

Tìm các số x, y, z biết rằng:

\[x:y:z = 3:4:5\] và \[5{z^2} - 3{x^2} - 2{y^2} = 594\]

Xem đáp án » 19/10/2022 141

Câu 12:

\[\frac{{xy + 1}}{9} = \frac{{xz + 2}}{{15}} = \frac{{yz + 3}}{{27}}\] và \[xy + yz + zx = 11\]

Xem đáp án » 19/10/2022 139

Câu 13:

Tìm x, y biết :

\[\frac{{1 + 3y}}{{12}} = \frac{{1 + 5y}}{{5x}} = \frac{{1 + 7y}}{{4x}}\]

Xem đáp án » 19/10/2022 138

Câu 14:

Tìm x, y biết :

\[\frac{{1 + 2y}}{{18}} = \frac{{1 + 4y}}{{24}} = \frac{{1 + 6y}}{{6x}};\]

Xem đáp án » 19/10/2022 132

Câu 15:

Với a, b, c, x, y, z khác 0 , biết \[\frac{{bz - cy}}{a} = \frac{{cx - az}}{b} = \frac{{ay - bx}}{c}\]

Chứng minh rằng : \[\frac{a}{x} = \frac{b}{y} = \frac{c}{z}\]

Xem đáp án » 19/10/2022 128

Câu hỏi mới nhất

Xem thêm »
Xem thêm »