Hướng dẫn:
Áp dụng tỉ số bằng nhau , ta có :
\[\frac{a}{{2016}} = \frac{b}{{2018}} = \frac{c}{{2020}} = \frac{{a - b}}{{ - 2}} = \frac{{b - c}}{{ - 2}} = \frac{{a - c}}{{ - 4}}\]
\[ \Rightarrow \frac{{{{\left( {a - c} \right)}^2}}}{{16}} = \left( {\frac{{a - b}}{{ - 2}}} \right)\left( {\frac{{b - c}}{{ - 2}}} \right) = \frac{{\left( {a - b} \right)\left( {b - c} \right)}}{4}\]
Do đó \[\frac{{{{\left( {a - c} \right)}^2}}}{4} = \left( {a - b} \right)\left( {b - c} \right)\]
Cho a, b, c, d khác 0 ,thỏa mãn tỉ lệ thức \[\frac{{21a + 10b}}{{a - 11b}} = \frac{{21c + 10d}}{{c - 11d}}\]
Chứng minh rằng \[\frac{a}{b} = \frac{c}{d}\]
Cho \[\frac{a}{b} = \frac{c}{d}\]. Các số x, y, z, t thỏa mãn \[xa + yb \ne 0\] và \[zc + td \ne 0\]
Chứng minh \[\frac{{xa + yb}}{{za + tb}} = \frac{{xc + yd}}{{zc + td}}\]
Cho \[a + b + c = {a^2} + {b^2} + {c^2} = 1\] và \[\frac{x}{a} = \frac{y}{b} = \frac{z}{c}\].
Chứng minh rằng:\[{\left( {x + y + z} \right)^2} = {x^2} + {y^2} + {z^2}\]
Cho dãy tỉ số bằng nhau : \[\frac{{{a_1}}}{{{a_2}}} = \frac{{{a_2}}}{{{a_3}}} = ... = \frac{{{a_{2019}}}}{{{a_{2020}}}} = \frac{{{a_{2020}}}}{{{a_1}}}\]
Tính giá trị biểu thức \[B = \frac{{{{\left( {{a_1} + {a_2} + ... + {a_{2020}}} \right)}^2}}}{{{a_1}^2 + {a_2}^2 + {a_3}^2 + ... + {a_{2020}}^2}}\]
Cho a, b, c, d khác 0 và không đối nhau từng đôi một, thỏa mãn dãy tỷ số bằng nhau :
\[\frac{{2021a + b + c + d}}{a} = \frac{{a + 2021b + c + d}}{b} = \frac{{a + b + 2021c + d}}{c} = \frac{{a + b + c + 2021d}}{d}\]
Tính \[M = \frac{{a + b}}{{c + d}} + \frac{{b + c}}{{d + a}} + \frac{{c + d}}{{a + b}} + \frac{{d + a}}{{b + c}}\]
Tìm các số x, y, z biết rằng:
\[x:y:z = 3:4:5\] và \[5{z^2} - 3{x^2} - 2{y^2} = 594\]
Tìm x, y biết :
\[\frac{{1 + 3y}}{{12}} = \frac{{1 + 5y}}{{5x}} = \frac{{1 + 7y}}{{4x}}\]
Tìm x, y biết :
\[\frac{{1 + 2y}}{{18}} = \frac{{1 + 4y}}{{24}} = \frac{{1 + 6y}}{{6x}};\]Với a, b, c, x, y, z khác 0 , biết \[\frac{{bz - cy}}{a} = \frac{{cx - az}}{b} = \frac{{ay - bx}}{c}\]
Chứng minh rằng : \[\frac{a}{x} = \frac{b}{y} = \frac{c}{z}\]