Chủ nhật, 12/01/2025
IMG-LOGO

Câu hỏi:

19/07/2024 128

Với a, b, c, x, y, z khác 0 , biết \[\frac{{bz - cy}}{a} = \frac{{cx - az}}{b} = \frac{{ay - bx}}{c}\]

Chứng minh rằng : \[\frac{a}{x} = \frac{b}{y} = \frac{c}{z}\]

Trả lời:

verified Giải bởi qa.haylamdo.com

Giải

Tìm cách giải. Quan sát phần kết luận ta cần biến đổi đưa về : \[ay = bx,bz = cy,az = cx\] hay cần chứng minh \[ay - bx = 0,bz - cy = 0,az - cx = 0\]. Vì vậy từ giả thiết ta cần chứng minh\[\frac{{bz - cy}}{a} = \frac{{cx - az}}{b} = \frac{{ay - bx}}{c} = 0\].  Với suy nghĩ đó , chúng ta cần nhân mỗi tỉ số với một số thích hợp vào tử và mẫu số sao cho khi vận dụng tính chất dãy tỉ số bằng nhau thì được kết quả bằng 0. Quan sát tỉ số \[\frac{{bz - cy}}{a}\] và \[\frac{{cx - az}}{b}\] ta thấy bz và \[ - az\]; để triệt tiêu được, chúng ta cần nhân cả tử và mẫu của tỉ số thứ nhất với a; nhân cả tử và mẫu của tỉ số thứ hai với b. Tương tự như vậy với tỉ số thứ ba.

Trình bày lời giải

Từ đề bài ta có : \[\frac{{abz - acy}}{{{a^2}}} = \frac{{bcx - abz}}{{{b^2}}} = \frac{{acy - bcx}}{{{c^2}}}\]

Áp dụng tính chất dãy tỉ số bằng nhau, ta có :

\[\frac{{abz - acy}}{{{a^2}}} = \frac{{bcx - abz}}{{{b^2}}} = \frac{{acy - bcx}}{{{c^2}}} = \frac{{abz - acy + bcx - abz + acy - bcx}}{{{a^2} + {b^2} + {c^2}}} = 0\]

Suy ra \[ay - bx = 0,bz - cy = 0,bz - cx = 0\]

\[ \Rightarrow ay = bx,bz = cy,bz = cx \Rightarrow \frac{a}{x} = \frac{b}{y} = \frac{c}{z}\]

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho a, b, c, d khác 0 ,thỏa mãn tỉ lệ thức \[\frac{{21a + 10b}}{{a - 11b}} = \frac{{21c + 10d}}{{c - 11d}}\]

Chứng minh rằng \[\frac{a}{b} = \frac{c}{d}\]

Xem đáp án » 19/10/2022 486

Câu 2:

Tìm x, y, z biết : \[\frac{x}{3} = \frac{y}{4},\frac{y}{3} = \frac{z}{5}\] và \[2x - 3y + z = 6\]

Xem đáp án » 19/10/2022 202

Câu 3:

Tìm hai số x và y biết \[\frac{x}{2} = \frac{y}{3}\] và \[xy = 24\]

Xem đáp án » 19/10/2022 191

Câu 4:

Cho \[\frac{a}{b} = \frac{c}{d}\]. Các số x, y, z, t thỏa mãn \[xa + yb \ne 0\] và \[zc + td \ne 0\]

Chứng minh \[\frac{{xa + yb}}{{za + tb}} = \frac{{xc + yd}}{{zc + td}}\]

Xem đáp án » 19/10/2022 187

Câu 5:

Tìm hai số x và y biết x/3 = y/4 và 2x + 3y = 36

Xem đáp án » 19/10/2022 182

Câu 6:

Cho tỉ lệ thức \[\frac{{3x - y}}{{x + y}} = \frac{3}{4}\]. Tính giá trị của tỉ số \[\frac{x}{y}\]

Xem đáp án » 19/10/2022 180

Câu 7:

Cho \[a + b + c = {a^2} + {b^2} + {c^2} = 1\] và \[\frac{x}{a} = \frac{y}{b} = \frac{z}{c}\].

 Chứng minh rằng:\[{\left( {x + y + z} \right)^2} = {x^2} + {y^2} + {z^2}\]

Xem đáp án » 19/10/2022 177

Câu 8:

Cho a, b, c thỏa mãn \[\frac{a}{{2016}} = \frac{b}{{2018}} = \frac{c}{{2020}}\].  Chứng minh rằng :\[\frac{{{{\left( {a - c} \right)}^2}}}{4} = \left( {a - b} \right)\left( {b - c} \right)\]

Xem đáp án » 19/10/2022 163

Câu 9:

Cho \[\frac{x}{{y + z + t}} = \frac{y}{{z + t + x}} = \frac{z}{{t + x + y}} = \frac{t}{{x + y + z}}\]. Chứng minh rằng biểu thức sau có giá trị nguyên \[A = \frac{{x + y}}{{z + t}} + \frac{{y + z}}{{t + x}} + \frac{{z + t}}{{x + y}} + \frac{{t + x}}{{y + z}}\]

Xem đáp án » 19/10/2022 159

Câu 10:

Cho dãy tỉ số bằng nhau : \[\frac{{{a_1}}}{{{a_2}}} = \frac{{{a_2}}}{{{a_3}}} = ... = \frac{{{a_{2019}}}}{{{a_{2020}}}} = \frac{{{a_{2020}}}}{{{a_1}}}\]

Tính giá trị biểu thức \[B = \frac{{{{\left( {{a_1} + {a_2} + ... + {a_{2020}}} \right)}^2}}}{{{a_1}^2 + {a_2}^2 + {a_3}^2 + ... + {a_{2020}}^2}}\]

Xem đáp án » 19/10/2022 151

Câu 11:

Cho a, b, c, d khác 0 và không đối nhau từng đôi một, thỏa mãn dãy tỷ số bằng nhau :

\[\frac{{2021a + b + c + d}}{a} = \frac{{a + 2021b + c + d}}{b} = \frac{{a + b + 2021c + d}}{c} = \frac{{a + b + c + 2021d}}{d}\]

Tính \[M = \frac{{a + b}}{{c + d}} + \frac{{b + c}}{{d + a}} + \frac{{c + d}}{{a + b}} + \frac{{d + a}}{{b + c}}\]

Xem đáp án » 19/10/2022 146

Câu 12:

Tìm các số x, y, z biết rằng:

\[x:y:z = 3:4:5\] và \[5{z^2} - 3{x^2} - 2{y^2} = 594\]

Xem đáp án » 19/10/2022 141

Câu 13:

\[\frac{{xy + 1}}{9} = \frac{{xz + 2}}{{15}} = \frac{{yz + 3}}{{27}}\] và \[xy + yz + zx = 11\]

Xem đáp án » 19/10/2022 139

Câu 14:

Tìm x, y biết :

\[\frac{{1 + 3y}}{{12}} = \frac{{1 + 5y}}{{5x}} = \frac{{1 + 7y}}{{4x}}\]

Xem đáp án » 19/10/2022 138

Câu 15:

Tìm x, y biết :

\[\frac{{1 + 2y}}{{18}} = \frac{{1 + 4y}}{{24}} = \frac{{1 + 6y}}{{6x}};\]

Xem đáp án » 19/10/2022 132

Câu hỏi mới nhất

Xem thêm »
Xem thêm »