Giải phương trình:
a) 7 + 2x = 32 – 3x;
b) ;
c) x2 + (x + 3)(x – 5) = 9;
d) .
a) 7 + 2x = 32 – 3x
Û 2x + 3x = 32 – 7
Û 5x = 25
Û x = 5
Vậy tập nghiệm của phương trình là S = {5};b)
Û 6x + 24 – 30x + 120 = 10x – 15x + 30
Û –24x + 144 = –5x + 30
Û 24x – 5x = 144 – 30
Û 19x = 114
Û x = 6
Vậy tập nghiệm của phương trình là S = {6};
c) x2 + (x + 3)(x – 5) = 9
Û x2 – 9 + (x + 3)(x – 5) = 0
Û (x – 3)(x + 3) + (x + 3)(x – 5) = 0
Û (x + 3) [(x – 3) + (x – 5)] = 0
Û (x + 3) (x – 3 + x – 5) = 0
Û (x + 3) (2x – 8) = 0
Vậy tập nghiệm của phương trình là S = {– 3; 4};
d)
Điều kiện xác định:
Ta có:
Þ (x + 2)2 – (3x – 6) – (3x + 10) = 0
Û (x + 2)2 – 3x + 6 – 3x – 10 = 0
Û (x + 2)2 – 6x – 4 = 0
Û x2 + 4x + 4 – 6x – 4 =0
Û x2 – 2x = 0
Û x.(x – 2) = 0
Vậy tập nghiệm của phương trình là S = {0}.
Cho tam giác ABC, vuông tại A (AB < AC). Vẽ đường cao AH (H Î BC). Lấy điểm D sao cho H là trung điểm BD.
a) Chứng minh ∆ABC ∆HBA;
b) Qua C dựng đường thẳng vuông góc với tia AD, cắt AD tại E. Chứng minh AH.CD = CE.AD;
c) Chứng minh ∆HDE ∆ADC và BD.AC = 2AD.HE;
d) AH cắt CE tại F. Chứng minh AF2 = 2BF.AE.
Cho x = by + cz (1); y = ax + cz (2); z = ax + by (3) và x + y + z ≠ 0; xyz ≠ 0.
Chứng minh đẳng thức .