Cho tam giác ABC, vuông tại A (AB < AC). Vẽ đường cao AH (H Î BC). Lấy điểm D sao cho H là trung điểm BD.
a) Chứng minh ∆ABC ∆HBA;
b) Qua C dựng đường thẳng vuông góc với tia AD, cắt AD tại E. Chứng minh AH.CD = CE.AD;
c) Chứng minh ∆HDE ∆ADC và BD.AC = 2AD.HE;
d) AH cắt CE tại F. Chứng minh AF2 = 2BF.AE.
a) Xét ∆ABC và ∆HBA có:
(gt)
chung (gt)
Do đó ∆ABC ∆HBA (g.g);b) Xét ∆ADH và ∆CDE có:
= 90o (gt)
(hai góc đối đỉnh)
Do đó ∆ADH ∆CDE (g.g).
Suy ra (các cạnh tương ứng tỉ lệ)
Vậy: AH.CD = CE.AD (đccm)c) Ta có: ∆ADH ∆CDE (câu b)
Suy ra (các cạnh tương ứng tỉ lệ)
Xét ∆HDE và ∆ADC có:
(cmt)
(hai góc đối đỉnh)
Suy ra ∆HDE ∆ADC (c.g.c)
Suy ra (các cạnh tương ứng tỉ lệ)
Do đó HD.AC = AD.HE
Mặc khác H là trung điểm của BD (gt) ;
Suy ra: HD.AC = .AC = AD.HE
Vậy BD.AC = 2AD.HE.d) Vì AH vừa là đường cao vừa là trung tuyến của BD nên AH là trung trực của BD.
Suy ra ∆ADB cân tại A và AH là phân giác của hay .
Từ câu a: ∆ABC ∆HBA suy ra (hai góc tương ứng);
Từ câu b: ∆ADH ∆CDE suy ra (hai góc tương ứng).
Do đó hay CH là phân giác của .
Mặc khác HC vừa là đường cao của ∆ACF nên HC là trung trực của AF.
Hay BC là đường trung trực của đoạn thẳng AF.
Do đó BA = BF.
Suy ra ∆ABF cân tại B có .
Xét ∆BHF và ∆FEA có:
(cmt)
= 90o (gt)
Suy ra ∆BHF ∆FEA (g.g)
Suy ra (các cạnh tương ứng tỉ lệ).
Do đó BF.AE = HF.AF.
Vì H là trung trực AF nên .
Suy ra
Do đó AF2 = 2BF.AE (đpcm).
Giải phương trình:
a) 7 + 2x = 32 – 3x;
b) ;
c) x2 + (x + 3)(x – 5) = 9;
d) .
Cho x = by + cz (1); y = ax + cz (2); z = ax + by (3) và x + y + z ≠ 0; xyz ≠ 0.
Chứng minh đẳng thức .