Phương pháp:
Nhóm hạng tử, đặt hạng tử chung, hằng đẳng thức...
Cách giải:
.
Thay vào biểu thức ta được:
.
Cho các số x, y, z dương thỏa mãn .
Tìm giá trị nhỏ nhất của biểu thức .
Cho biểu thức với .
Cho tam giác ABC có , từ trung điểm M của AB kẻ tia Mx song song BC, từ C kẻ tia Cy song song AB sao cho Mx cắt Cy tại N.
Gọi D là giao điểm của MN với AC, E là giao điểm của MC với BN, F là giao điểm của ED với AN. Chứng minh .
Cho tam giác ABC có , từ trung điểm M của AB kẻ tia Mx song song BC, từ C kẻ tia Cy song song AB sao cho Mx cắt Cy tại N.
Chứng minh .
Cho tam giác ABC có , từ trung điểm M của AB kẻ tia Mx song song BC, từ C kẻ tia Cy song song AB sao cho Mx cắt Cy tại N.
Gọi G là giao điểm của AE với MN. Chứng minh B, G, F thẳng hàng.
Cho biểu thức với .
Tính giá trị của biểu thức P, với x thỏa mãn .
Cho tam giác ABC có , từ trung điểm M của AB kẻ tia Mx song song BC, từ C kẻ tia Cy song song AB sao cho Mx cắt Cy tại N.
Chứng minh tứ giác MBCN là hình bình hành.