Thứ năm, 26/12/2024
IMG-LOGO

Câu hỏi:

17/07/2024 68

b) Tính số đo xOy^ để B đối xứng với C qua O

Trả lời:

verified Giải bởi qa.haylamdo.com

b) Xét AOB có

OA = OB (cmt)

=> AOB cân tại O

Ta lại có Ox là trung trực của AB

=> Ox là tia phân giác của AOB^ 

=> O1^=O2^ (3)

Xét  AOC Có

OA = OC (cmt)

=> AOB cân tại O

Ta lại có Oy là trung trực của AC

=> Oy là tia phân giác của AOC^ 

=> O3^=O4^ (4)

Ta có BOC^=O1^+O2^+O3^+O4^      (5) 

Từ (3)(4) và (5) suy ra

BOC^=O2^+O2^+O3^+O3^                 =2(O2^+O3^)           =2.xOy^

Ta có OB = OC (cmt)

Để B đối xứng với C qua điểm O

BOC^=1800

2.xOy^=1800xOy^=1800:2xOy^=900

Vậy xOy^=900 thì B đối xứng với C qua O

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC có đường cao BD và CE cắt nhau tại H. Qua B vẽ đường thẳng vuông góc với AB, Qua C vẽ đường thẳng vuông góc với AC, hai đường thẳng này cắt nhau tại G. Gọi I là trung điểm của BC. Chứng minh rằng G đối xứng với H qua I.

Xem đáp án » 19/10/2022 160

Câu 2:

Cho tam giác ABC, D là một điểm trên BC, Qua D vẽ DE //AB (E thuộc AC) vẽ DF//AC (F thuộc AB). Gọi I là trung điểm của AD. Chứng minh rằng E đối xứng với F qua điểm I.

Xem đáp án » 19/10/2022 152

Câu 3:

Cho tam giác ABC vuông tại A, điểm D thuộc cạnh BC. Gọi E là điểm đối xứng với D qua AB, gọi F là điểm đối xứng với D qua AC. Chứng minh rằng các điểm E và F đối xứng nhau qua điểm A.

Xem đáp án » 19/10/2022 128

Câu 4:

Cho hình bình hành ABCD, O là giao điểm của hai đường chéo. Một đường thẳng đi qua O cắt hai cạnh đối AD, BC ở E, F. Chứng minh rằng các điểm E và F đối xứng nhau qua điểm O.

Xem đáp án » 19/10/2022 118

Câu 5:

Cho tam giác ABC, D là trung điểm của AB, E là trung điểm của AC. Gọi O là điểm bất kỳ nằm trong tam giác ABC. Vẽ M đối xứng với O qua D, vẽ N đối xứng với O qua E. Chứng minh rằng MNCB là hình bình hành.

Xem đáp án » 19/10/2022 95

Câu 6:

Cho ABC có H là trực tâm. Gọi M là trung điểm của BC, K là điểm đối xứng với H qua M. Tính số đo ABK^ACK^

Xem đáp án » 19/10/2022 89

Câu 7:

Cho hình vẽ trong đó ABCD là hình bình hành. Chứng minh rằng điểm M đối xứng với điểm N qua C.

Cho hình vẽ  trong đó ABCD là hình bình hành. Chứng minh rằng điểm M đối xứng với điểm N qua C. (ảnh 1)

Xem đáp án » 19/10/2022 84

Câu 8:

Cho hình thang ABCD (AD//BC). Gọi M, N lần lượt là trung điểm của các cạnh AB, CD; E là một điểm bất kỳ trên cạnh đáy AD và I, K là điểm đối xứng với E lần lượt qua M và N. Chứng minh rằng độ dài IK không phụ thuộc vào vị trí của điểm E

Xem đáp án » 19/10/2022 82

Câu 9:

Cho xOy^, điểm A nằm trong góc đó, Vẽ điểm B đối xứng với A qua Ox, C đối xứng với A qua Oy.

a) Chứng minh rằng OB = OC

Xem đáp án » 19/10/2022 74

Câu 10:

Cho tam giác ABC, các đường trung tuyến BM, CN. Gọi D là điểm đối xứng với B qua M, gọi E là điểm đối xứng với C qua N. Chứng minh rằng điểm D đối xứng với điểm E qua điểm A.

Xem đáp án » 19/10/2022 73