Thứ năm, 26/12/2024
IMG-LOGO

Câu hỏi:

12/07/2024 107

Cho hình chữ nhật ABCD, AB = 15, BC = 8. Trên các cạnh AB, BC, CD, DA lần lượt lấy các điểm E, F, G, H. Tính giá trị nhỏ nhất của chu vi tứ giác EFGH.

Trả lời:

verified Giải bởi qa.haylamdo.com

Cho hình chữ nhật ABCD, AB = 15, BC = 8. Trên các cạnh AB, BC, CD, DA lần lượt lấy các điểm E, F, G, H.  (ảnh 1)

Gọi M, N, P lần lượt là trung điểm của HE, HF và FG

Theo tính chất đường trung bình của tam giác, tính chất đường trung tuyến ứng với cạnh huyền của tam giác vuông, ta có:

EF=2MN;FG=2CP;GH=2NP;HE=2AM.

Do đó chu vi của hình tứ giác EFGH là:

EF+FG+GH+HE=2AM+MN+NP+PC.

Xét các điểm A, M, N, P, C, ta có:  AM+MN+NP+PCAC (không đổi).

AC2=AB2+BC2=152+82=289AC=17.

Vậy chu vi của tứ giác EFGH2.17=34 (dấu ''='' xảy ra <=> M, N, P nằm trên AC theo thứ tự đó <=> EF // AC // HG và HE // BD // FG).

Do đó giá trị nhỏ nhất của chu vi tứ giác EFGH là 34.

EF=2MN;FG=2CP;GH=2NP;HE=2AM.

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC vuông tại A (AB < AC), đường cao AH. Trên cạnh AC lấy điểm D sao cho AD = AB. Gọi M là trung điểm của BD. Chứng minh rằng tia HM là tia phân giác của góc AHC.

Xem đáp án » 19/10/2022 163

Câu 2:

Cho hình bình hành ABCD. Biết AD=12AC và BAC^=12DAC^. Chứng minh rằng hình bình hành ABCD là hình chữ nhật.

Xem đáp án » 19/10/2022 156

Câu 3:

Cho tam giác đều ABC cạnh a. Trên các cạnh AB, AC lần lượt lấy các điểm D và E sao cho AD = CE. Tìm giá trị nhỏ nhất của độ dài DE.

Xem đáp án » 19/10/2022 131

Câu 4:

Cho góc xOy có số đo bằng 30°. Điểm A cố định trên tia Ox sao cho OA = 2cm. Lấy điểm B bất kì trên tia Oy. Trên tia đối của tia BA lấy điểm C sao cho BC = 2BBA. Hỏi khi điểm B di động trên tia Oy thì điểm C di động trên đường nào?

Xem đáp án » 19/10/2022 119

Câu 5:

Cho tam giác ABC vuông tại A. Gọi O là một giao điểm bất kì trong tam giác. Vẽ ODAB,OEBCOFCA. Tìm giá trị nhỏ nhất của tổng: S=OD2+OE2+OF2

Xem đáp án » 19/10/2022 110

Câu 6:

Cho hình chữ nhật ABCD, đường chéo AC = d. Trên các cạnh AB, BC, CD và DA lần lượt lấy các điểm M, N, P, Q. Tính giá trị nhỏ nhất của tổng: S=MN2+NP2+PQ2+QM2

Xem đáp án » 19/10/2022 106

Câu 7:

Cho tam giác ABC vuông tại A. Trên cạnh huyền BC lấy một điểm M. Vẽ MDAB,MEACAHBC. Tính số đo của góc DHE.

Xem đáp án » 19/10/2022 105

Câu 8:

Cho tam giác ABC vuông cân tại A, đường cao AD. Gọi M là một điểm bất kì trên cạnh BC. Vẽ MEAB,MFAC. Tính số đo các góc của tam giác DEF.

Xem đáp án » 19/10/2022 103

Câu 9:

Cho tam giác ABC vuông tại A, đường cao AH, đường trung tuyến AD. Vẽ HEAB,HFAC. Gọi M và N lần lượt là trung điểm của HB và HC.

a) Chứng minh rằng: EM // FN // AD

Xem đáp án » 19/10/2022 95

Câu 10:

Cho hình chữ nhật ABCD, AB = 8, BC = 6. Điểm M nằm trong hình chữ nhật. Tìm giá trị nhỏ nhất của tổng: S=MA2+MB2+MC2+MD2.

Xem đáp án » 19/10/2022 80

Câu 11:

b) Tam giác ABC phải có thêm điều kiện gì thì ba đường thẳng EM, FN, AD là ba đường thẳng song song cách đều.

Xem đáp án » 19/10/2022 75

Câu 12:

Cho góc xOy có số đo bằng 45°. Điểm A cố định trên tia Ox sao cho OA=32cm. Lấy điểm B bất kì trên tia Oy. Gọi G là trọng tâm của tam giác OAB. Hỏi khi điểm B di động trên tia Oy thì điểm G di động trên đường nào?

Xem đáp án » 19/10/2022 69