Phương trình hoành độ giao điểm .
Giải phương trình tìm được ; . Ta xác định được điểm , .
Do đó, hình chiếu của A , Btrên trục hoành lần lượt là D(-1;0), C(2;0).
Khi đó , là hình thang vuông tại C, D có các đáy là , , đường cao .
Diện tích cần tìm là (đơn vị diện tích).
Trong mặt phẳng tọa độ , cho parabol (P): và đường thẳng (d): .
a) Vẽ đồ thị của (P).
b) Tìm m để đường thẳng (d) đi qua điểm .
c) Đường thẳng cắt parabol (P) tại hai điểm A, B. Tìm tọa độ của A, B và tính diện tích tam giác OAB.
a)
Cho hai hàm số và có đồ thị lần lượt là (P) và (d)
a) Vẽ hai đồ thị (P) và (d) trên cùng mặt phẳng tọa độ.
a) Tìm tọa độ giao điểm của hai đồ thị (P) và (d).
Trong mặt phẳng tọa độ Oxy , cho parabol (P) có phương trình và đường thẳng (d) có phương trình (với là tham số).
Chứng minh rằng (d) luôn cắt (P) tại hai điểm phân biệt với mọi giá trị của .
Tìm các giá trị của m để (d) cắt (P) tại hai điểm phân biệt có hoành độ thỏa mãn .
Cho hàm số: với là một biểu thức đại số xác định với .
Biết rằng: . Tính .
Cho hàm số có dồ thị Vẽ đồ thị (P) tìm tất cả các giá trị của m sao cho (d) cắt (P) tại điểm có hoành độ bằng – 1
Cho hai đường thẳng và (với m là tham số, ).
Gọi là giao điểm của với . Tính giá trị của biểu thức
Trong mặt phẳng tọa độ Oxy, cho đường thẳng và parabol
a) Xác định hệ số b để (d) đi qua điểm
b) Với b=-1 , tìm tọa độ giao điểm của (d) và (P) bằng phương pháp đại số
Cho hai hàm số y = - x +2 và có đồ thị lần lượt là (d) và (P)
1) Vẽ (d) và (P) trên cùng một hệ trục tọa độ
2) Bằng phép toán tìm tọa độ giao điểm của (d) và (P)
Tìm m để đường thẳng (d): đi qua điểm
Cho parabol (P): và đường thằng (d): (m là tham số)
a) Vẽ parabol (P).
b) Với những giá trị nào của m thì (P) và (d) chỉ có một điểm chung. Tìm tọa độ điểm chung đó.