b) Tìm a để hệ phương trình có nghiệm duy nhất (x,y) thỏa mãn là số nguyên.
b) Với a=0thì hệ , hệ có nghiệm.
Với . Hệ có nghiệm duy nhất (luôn đúng).
Hệ phương trình luôn có nghiệm với mọi a.
.
(Vì nên rút gọn được ta có y=2).
Hệ phương trình luôn có nghiệm duy nhất .
Xét:
Ta có: .
Mà theo đề bài để thì .
Vậy a=1 hoặc a= -1 thỏa mãn đề bài.
Lưu ý: Đối với bài toán tìm a để biểu thức A nhận giá trị nguyên thì ta đi tìm khoảng giá trị của biểu thức A, tìm các giá trị nguyên của A trong khoảng này rồi thay vào tìm a. Phân biệt với bài toán tìm a là số nguyên để A nhận giá trị nguyên thì khi đó mới có Ư (4).
Cho hệ phương trình (m là tham số).
Tìm m để hệ phương trình có nghiệm duy nhất. Tìm m nguyên để có giá trị nguyên.
Cho hệ phương trình (m là tham số). Tìm m để hệ phương trình có nghiệm duy nhất. Khi đó, hệ thức liên hệ giữa x và y không phụ thuộc vào m.
Cho hệ phương trình . Tìm điều kiện của m để phương trình có nghiệm duy nhất.
Cho hệ phương trình (m là tham số).
Tìm m để hệ phương trình có nghiệm duy nhất thỏa mãn .
Cho hệ phương trình (m, n là tham số).
a) Không dùng máy tính cầm tay hãy giải hệ phương trình khi .
Cho hệ phương trình . Tìm điều kiện của m để phương trình có nghiệm duy nhất và tìm nghiệm duy nhất đó.