Thứ bảy, 23/11/2024
IMG-LOGO

Câu hỏi:

21/07/2024 166

Cho đường tròn O;12 cm và điểm M cách  một khoảng bằng 20 cm. Kẻ tiếp tuyến MA ( là tiếp điểm) và kẻ dây  vuông góc với OM. Chứng minh MB là tiếp tuyến của đường tròn (O).

Trả lời:

verified Giải bởi qa.haylamdo.com

Phân tích đề bài

Media VietJack

 là tiếp tuyến của đường tròn (O)

                          

                     OBBM

                           

                    OBM^=90°

                           

                  OBM^=OAM^

Giải chi tiết

Gọi H=OMAB. Xét ΔOAH ΔOBH có: OA =  (bán kính đường tròn (O));

                                                                              OHA^=OHB^=90° (giả thiết);

                                                                              OH chung.

Suy ra ΔOAH=ΔOBH (cạnh huyền – cạnh góc vuông) HA=HB (hai cạnh tương ứng).

Tam giác MAB có MH vừa là đường cao đồng thời là đường trung tuyến nên ΔMAB cân tại M

A1^=B1^ (hai góc ở đáy).

Lại có ΔOAB cân tại O nên A2^=B2^. Khi đó MBO^=B1^+B2^=A1^+A2^=OAM^=90°.

Suy ra OBBM. Vậy MB là tiếp tuyến của đường tròn (O).

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho đường tròn (0; R) và điểm A nằm ngoài đường tròn. Từ A kẻ tiếp tuyến AE đến đường tròn (O) (với E là tiếp điểm). Vẽ dây EH vuông góc với AO tại M.

a) Cho biết bán kính R = 5cm, OM = 3cm. Tính độ dài dây EH.

b) Chứng minh AH là tiếp tuyến của đường tròn (O).

c) Đường thẳng qua O vuông góc với OA cắt AH tại B. Vẽ tiếp tuyến BF với đường tròn (O) (F là tiếp điểm). Chứng minh ba điểm E, O, F thẳng hàng và BF.AE=R2.

d) Trên tia HB lấy điểm IIB, qua I vẽ tiếp tuyến thứ hai với đường tròn (O) cắt các đường thẳng BF, AE lần lượt tại C và D. Vẽ đường thẳng IF cắt AE tại Q.

Chứng minh AE = DQ.

Xem đáp án » 19/10/2022 192

Câu 2:

Cho đường tròn O;R đường kính AB. Qua A B vẽ lần lượt hai tiếp tuyến d d'. Một đường thẳng qua O cắt đường thẳng d M d' P. Từ O kẻ Ox vuông góc với MP và cắt d' N.

a) Chứng minh OM=OP ΔNMP cân.

b) Chứng minh MN là tiếp tuyến của O.

c) Chứng minh AM.BN=R2.

d) Tìm vị trí của M để diện tích tứ giác AMNB là nhỏ nhất.

Xem đáp án » 19/10/2022 188

Câu 3:

Cho tam giác ABC có hai đường cao BD CE cắt nhau tại H.

a) Chứng minh rằng bốn điểm A, D, H , cùng nằm trên một đường tròn (gọi tâm của nó là O ).

b) Gọi M là trung điểm của BC. Chứng minh rằng ME là tiếp tuyến của đường tròn (O).

Xem đáp án » 19/10/2022 176