Mỗi khẳng định sau đúng hay sai:
A. Góc tạo bởi tia tiếp tuyến và dây cung luôn nhỏ hơn 900.
B. Trong một đường tròn, các góc nội tiếp bằng nhau chắn các cung bằng nhau.
C. Góc vuông nội tiếp thì chắn nửa đường tròn.
D. Góc tù nội tiếp thì có số đo bằng nửa số đo góc ở tâm cùng chắn một cung.
Chọn đáp án A
Cho đường tròn tâm O và một dây AB của đường tròn đó. Các tiếp tuyến vẽ từ A và B của đường tròn cắt nhau tại C. Gọi D là một điểm trên đường tròn có đường kính OC ( D khác A và B). CD cắt cung AB của đường tròn (O) tại E. (E nằm giữa C và D). Chứng minh rằng:
a) .
Cho tam giác ABC nội tiếp đường tròn (O). Tia phân giác góc A cắt BC tại D và cắt đường tròn tại điểm thứ hai là M. Kẻ tiếp tuyến AK với đường tròn (M, MB), K là tiếp điểm. Chứng minh rằng DK vuông góc với AM.
Cho (O) và hai dây MA và MB vuông góc với nhau. Gọi I, K lần lượt là điểm chính giữa của các cung nhỏ MA, MB. Gọi P là giao điểm của AK và BI.
a) CMR: A, O, B thẳng hàng.
Cho nửa đường tròn (O) đường kính CB, A thuộc nửa đường tròn sao cho AB < AC. Tiếp tuyến tại A cắt đường thẳng BC ở I. Kẻ AH vuông góc với BC. CMR:
a) AB là tia phân giác của góc IAH.
Cho tam giác ABC vuông tại A, đường cao AH. Vẽ (I) đường kính BH cắt AB ở M. Vẽ (K) đường kính CH cắt AC ở N.
a) Tứ giác AMHN là hình gì ? CM ?
Cho đường tròn (O) có các dây cung AB, BC, CA. Gọi M là điểm chính giữa của cung nhỏ AB. Vẽ dây MN song song với BC và gọi S là giao điểm của MN và AC. Chứng minh SM = SC và SN = SA.
Từ điểm M ở ngoài đường tròn (O), vẽ hai tiếp tuyến MA, MB và một cát tuyến MCD. Gọi I là giao điểm của AB và CD. Chứng minh rằng: .
Cho (O) đường kính AB; C chạy trên một nửa đường tròn. Vẽ đường tròn tâm I tiếp xúc với đường tròn (O) tại C, tiếp xúc với đường kính AB tại D. Đường tròn này cắt CA, CB lần lượt tại M và N.
a) CMR: 3 điểm M, I, N thẳng hàng .
Cho tam giác ABC có ba góc nhọn, đường cao AH và nội tiếp đường tròn tâm O, đường kính AM.
a) Tính ;
Cho (O) và hai dây AB, CD bằng nhau và cắt nhau tại M. ( C thuộc cung nhỏ AB, B thuộc cung nhỏ CD).
a) CMR: cung AC = cung DB.
c, Vẽ tiếp tuyến Ax của đường tròn ngoại tiếp tam giác ABC. CMR : Ax // MN.
Cho hình bình hành ABCD, góc A < 900. Đường tròn ngoại tiếp tam giác BCD cắt AC ở E. Chứng mình rằng BD là tiếp tuyến của đường tròn ngoại tiếp tam giác AEB.
b, Tìm quỹ tích trung điểm M của CD khi cát tuyến CBD quay quanh B.
Trên nửa đường tròn (O) đường kính AB, lấy hai điểm M và N sao cho cung AM = cung MN = cung NB. Gọi P là giao điểm của AM và BN ; H là giao điểm của AN với BM. CMR :
a) Tứ giác AMNB là hình thang cân.
c) Gọi N là giao điểm AH với đường tròn (O). Tứ giác BCMN là hình gì? Vì sao?