A.
B.
C.
D.
Đáp án đúng là: B
F(x) = x2 là nguyên hàm của f(x)sin2x
Nên F'(x) = f(x)sin2x
Û 2x = f(x)sin2x Û f(x) =
G(x) là nguyên hàm của f(x)cos2x
Do đó G(x) = =
= =
= − x2
= −2xcotx + − x2
= −2xcotx – x2 + 2
= −2xcotx – x2 + 2ln|sinx| + C
Theo giả thiết:
• G = 0
Û + C = 0 Û C =
Nên G(x) = −2xcotx – x2 + 2ln|sinx| +
•
=
=
=
Mà G = aπ + bπ2 + cln2
Nên ta có: a = ; b = ; c = −1
Vậy a + b + c = + − 1 = .
Cho hàm số f(x) thỏa mãn f(x) + f '(x) = e−x, ∀ x ∈ ℝ và f(0) = 2. Tất cả các nguyên hàm của f(x)e2x là
Cho hàm số y = f(x) liên tục và không âm trên đoạn [a; b]. Gọi hình phẳng (H) giới hạn bởi các đường y = f(x), y = 0, x = a và x = b. Thể tích V của khối tròn xoay thu được khi quay hình (H) xung quanh Ox bằng
Cho hàm số f(x) liên tục trên đoạn [1; 3]. Biết F(x) là nguyên hàm của f(x) trên đoạn [1; 3] thỏa mãn F(1) = −2 và F(3) = 5. Khi đó bằng
Có bao nhiêu giá trị nguyên của tham số m để phương trình z2 – 2mz + 6m – 5 = 0 có hai nghiệm phức phân biệt z1, z2 thỏa mãn |z1| = |z2|?
Cho hàm số f(x) có đạo hàm liên tục trên ℝ và với mọi a, b, k ∈ ℝ. Khẳng định nào sau đây sai?
Cho hàm số f(x) có đạo hàm liên tục trên đoạn [0; 1] và f(1) = . Tích phân bằng
Trong không gian Oxyz, cho mặt phẳng (P) : x − 2y + 1 = 0. Một vectơ pháp tuyến của (P) có tọa độ là