Tìm nghiệm của phương trình:
B. Không có z thỏa mãn
Chọn B.
Điều kiện: z 3i
Đặt . Phương trình đã cho trở thành: t2 - 3t – 4 = 0
Suy ra: t = 4 hoặc t = -1
Với t = 4 thì
Hay iz + 3 = 4( z – 3i)
Không thỏa mãn.
Với t = -1 thì
Suy ra: iz + 3 = -1 ( z - 3i)
( 1 + i) z = -3 + 3i hay z = 3i (không thỏa mãn)
Vậy không có z thỏa mãn.
Cho 3 điểm A ; B ;C lần lượt biểu diễn cho các số phức z1 ; z2 ; z3 .Biết | z1| = | z2| = | z3| và z1+ z2= 0 . Khi đó tam giác ABC là tam giác gì?
Cho số phức z = m - 2 + ( m2 - 1) i với m là số thực. Gọi (C) là tập hợp các điểm biểu diễn số phức z trong mặt phẳng tọa độ. Tính diện tích hình phẳng giới hạn bởi (C) và Ox.
Trong mặt phẳng phức Oxy, tập hợp biểu diễn số phức z thỏa mãn là đường tròn C. Diện tích S của đường tròn C bằng bao nhiêu?
Cho số phức z thỏa mãn ( 1 - 3i) z là số thực và . Hỏi có bao nhiêu số phức z thỏa mãn
Cho A; B; C tương ứng là các điểm trong mặt phẳng phức biểu diễn các số phức z1 = 1 + 2i; z2 = -2 + 5i ; z3 = 2 + 4i . Số phức z biểu diễn bởi điểm D sao cho tứ giác ABCD là hình bình hành là
Cho số phức z thỏa mãn |z + 2| + |z – 2| = 8. Trong mặt phẳng phức tập hợp những điểm M biểu diễn cho số phức z là?
Giải phương trình sau: ( z2 + 3z + 6) 2 + 2z( z2 + 3z + 6) - 3z2 = 0
Gọi M là điểm biểu diễn của số phức z thỏa mãn 3| z + i| = | 2 - z + 3i | . Tập hợp tất cả những điểm M như vậy là
Xét số phức z thỏa mãn 2|z - 1 | + 3| z - i | . Mệnh đề nào dưới đây đúng?
Xác định tập hợp các điểm M trong mặt phẳng phức biểu diễn các số phức z thỏa mãn điều kiện