Cho a; b là các số thực dương thoả mãn a2 + b2 = 14ab . Khẳng định nào sau đây là sai ?
A.
B. 2log2(a + b) = 4 + log2a + log2b.
C. 2log4(a + b) = 4 + log4a + log4b.
D.
Chọn C.
Ta có a2 + b2 = 14ab nên (a + b)2 = 16ab hay
+ Nên ta có vậy A đúng
+ 2log2( a + b) = log2 (a + b) 2= log2( 16ab) = 4 + log2a + log2b.
vậy B đúng
+ 2log4(a + b) = log4( a + b)2= log4(16ab) = 2 + log4a + log4b . vậy C sai
+ vậy D đúng.
Cho x; y là các số thực lớn hơn thoả mãn x2 + 9y2 = 6xy . Tính
Cho x; y > 0 thỏa mãn log2x + log2y = log4( x + y) Tìm x; y để biểu thức P = x2 + y2 đạt giá trị nhỏ nhất.
Cho x; y > 0 và x2 + 4y2 = 12xy . Khẳng định nào sau đây là khẳng định đúng?
Tìm x để ba số ln2; ln( 2x - 1); ln( 2x + 3) theo thứ tự lập thành cấp số cộng.
Cho hai số thực a; b với 1< a< b. Khẳng định nào sau đây là khẳng định đúng?
Cho a; b > 0 thỏa mãn a2 + b 2 = 7ab. Chọn mệnh đề đúng trong các mệnh đề sau?
Cho f(1) = 1; f(m + n) = f(m) + f( n) + m.n với các số nguyên dương m; n .Khi đó giá trị của biểu thức là
Cho x; y; z là các số thực dương tùy ý khác 1 và xyz khác 1. Đặt a = logxy; b = logzy. Mệnh đề nào sau đây đúng?