Phương trình log3(2x + 1) = 2log2x+13 + 1 có hai nghiệm phân biệt . Giá trị biểu thức x1+ x2+ x1.x2 thuộc khoảng nào dưới đây
A. (0; 1)
B. (1; 2)
C. (2; 3)
D. (3; 4)
Chọn C.
Điều kiện:
.
Đặt t = log3(2x + 1) suy ra
Khi đó, phương trình đã cho trở thành
Với t = -1 ta có log3( 2x + 1) = -1 hay 2x + 1 = 3-1 nên x = -1/3
Với t = 2 ta có log3(2x + 1) = 2 hay 2x + 1 = 32 nên x = 4
Vậy giá trị biểu thức
Có bao nhiêu giá trị nguyên của m để phương trình có 4 nghiệm phân biệt.
Giải phương trình log2x.log3x + x.log3x + 3 = log2x + 3log3x + x . Ta có tổng các nghiệm là
Phương trình log2( 5x - 1) log2( 2.5x - 2) = 2 có hai nghiệm phân biệt
Tỉ số gần với giá trị nào sau đây nhất, biết rằng x1 > x2 > 0
Tìm tất cả các giá trị thực của m để phương trình log2( -x2 - 3x – m + 10) = 3 có nghiệm thực phân biệt trái dấu.
Tập nghiệm của bất phương trình có dạng với a; b; c là các số nguyên. Tính tổng S = a + b + c .
Cho phương trình sau:
Tìm m để phương trình trên có 2 nghiệm phân biệt thỏa mãn 4 < x1 < x2 < 6 .
Phương trình có nghiệm duy nhất được biểu diễn dưới dạng với m; n là các số nguyên. Tổng m + n bằng.
Phương trình lg4(x - 1) 2 + lg2(x - 1) 3 = 25 có bao nhiêu nghiệm ?