Các giá trị của tham số m để phương trình 12x + (4 – m).3x – m = 0 có nghiệm thực khoảng (–1;0) là:
A.
B.
C.
D.
Đáp án A
Phương trình 12x + (4 – m).3x – m = 0 <=> 12x + 4.3x = m(3x + 1)
Xét hàm số trên khoảng (–1;0) có
Ta có
Khi đó f’(x) > 0; suy ra f(x) là hàm số đồng biến trên khoảng (–1;0)
Tính các giá trị
Nên để phương trình (*) có nghiệm <=> min f(x) < m < max f(x)
Biết tập nghiệm S của bất phương trình là khoảng (a;b). Tính b – a.
Bất phương trình tập nghiệm là . Tính giá trị của P = 3a – b là:
Với hai số thực dương a, b tùy ý và . Khẳng định nào dưới đây là khẳng định đúng?
Biết log7 2 = m, khi đó giá trị của log49 28 được tính theo m là:
Cho phương trình . Biết rằng , a < b < c < d là tập hợp các giá trị của tham số m để phương trình đã cho có hai nghiệm phân biệt x1, x2 thỏa mãn . Tính giá trị biểu thức A = a + b + 5c + 2d.
Cho x, y là các số thực dương thỏa mãn và , với a, b là các số nguyên dương. Tính a + b
Gọi x, y là các số thực dương thỏa mãn điều kiện log9 x = log6 x = log4 (x + y) và biết rằng với a, b là các số nguyên dương. Tính giá trị a + b.
Biết rằng phương trình có hai nghiệm x1, x2 (x1 < x2). Tính 2x1 – x2.
Có tất cả bao nhiêu cặp số thực (x,y) thỏa mãn đồng thời các điều kiện và