Cho ba số phức thỏa mãn
Tính giá trị của biểu thức .
A.
B.
C.
D.
Đáp án D
Cách 1: Đại số
Từ (1) .
Thế vào (2) ta được: (3)
Từ (1) và (3): .
Cách 2: Hình học
Ta có:
(1)
Gọi là 3 điểm biểu diễn
Dễ dàng có:
(2)
Từ (1) và (2):
Cách 3: Chuẩn hóa chọn .
Cho các số phức z, w thỏa mãn
Tìm giá trị lớn nhất của biểu thức
Cho w là số phức thay đổi thỏa mãn .
Trong mặt phẳng phức, các điểm biểu diễn số phức z=3w+1-2i chạy trên đường nào?
Cho các số phức w,z thỏa mãn và 5w=(2+i)(z-4).
Giá trị lớn nhất của biểu thức bằng
Cho số phức z thỏa mãn . Biết tập hợp các điểm biểu diễn số phức w xác định bởi là một đường tròn bán kính R. Tính R
Có bao nhiêu số phức z thỏa mãn đồng thời hai điều kiện sau: và ?
Tập hợp tất cả các điểm biễu diễn các số phức z thõa mãn là đường tròn có tâm I và bán kính R lần lượt là
Cho số phức z=1+i. Biết rằng tồn tại các số phức
(trong đó ) thỏa mãn .
Tính b-a.
Cho số phức z, biết rằng các điểm biễu diễn hình học của các số phức z, iz và z+iz tạo thành một tam giác có diện tích bằng 18. Modun của số phức bằng
Gọi là bốn nghiệm phân biệt của phương trình trên tập số phức.
Tính giá trị của biểu thức