Trong số các số phức z thỏa mãn điều kiện gọi là số phức có mô đun lớn nhất. Khi đó là:
A. 3
B. 4
C. 5
D. 8
Đáp án D
Cách giải: gọi z=x+yi
Vậy quỹ tích các điểm z thuộc đường tròn tâm I(4;-3); R=3
Đặt
(theo bunhiacopxki)
Cho số phức z thỏa mãn: , với m là tham số thực thuộc .
Biết rằng tập hợp các điểm biểu diễn các số phức w=(3-4i)z-2i là một đường tròn.
Tính bán kính r nhỏ nhất của đường tròn đó.
Trong mặt phẳng tọa độ Oxy, cho điểm M là điểm biểu diễn của số phức z=4+2i.
Phương trình đường trung trực của đoạn OM là:
Cho các số phức z, w thỏa mãn .
Giá trị nhỏ nhất của là
Gọi và là hai nghiệm phức của phương trình z2 + 2z + 2 = 0.
Tính giá trị của biểu thức
Cho số phức z=a+bi với a, b là hai số thực khác 0. Một phương trình bậc hai với hệ số thực nhận làm nghiệm với mọi a, b là:
Cho các số phức z thỏa mãn . Tập hợp các điểm biểu diễn các số phức z trên mặt phẳng tọa độ là một đường thẳng. Viết phương trình đường thẳng đó
Trên mặt phẳng phức, cho điểm A biểu diễn số phức 3-2i, điểm B biểu diễn số phức -1+6i. Gọi M là trung điểm của AB. Khi đó điểm M biểu diễn số phức nào trong các số phức sau:
Cho hai số phức thỏa mãn và biểu thức đạt giá trị nhỏ nhất. Tính .
Gọi P là điểm biểu diễn của số phức a+bi trong mặt phẳng phức.
Cho các mệnh đề sau:
(1) Môđun của a+bi là bình phương khoảng cách OP.
(2) Nếu P là biểu diễn của số 3+4i thì khoảng cách từ O đến P bằng 7.
Chọn đáp án đúng: