Thể tích của khối tròn xoay thu được khi quay quanh trục Ox hình phẳng giới hạn bới đồ thị hàm số , trục hoành và đường thẳng x = 1 là:
Đáp án A
Tính thể tích V của phần vật thể giới hạn bởi hai mặt phẳng x = 1 và x = 3, biết rằng khi cắt vật thể bởi mặt phẳng tùy ý vuông góc với trục Ox tại điểm có hoành độ x thì được thiết diện là một hình chữ nhật có độ dài hai cạnh là 3x và
Cho f(x) là hàm liên tục và a>0. Giả sử rằng với mọi x thuộc [0;a] ta có f(x)>0 và f(x).f(a-x) = 1 Hãy tính theo a.
Cho chuyển động thẳng xác định bởi phương trình (t: giây), s được tính bằng m. Vận tốc của chuyển động tại t = 4 (giây) là:
Cho (P) và đường thẳng d: mx-y+2=0. Tìm m để diện tích hình phẳng giới hạn bởi (P) và d đạt giá trị nhỏ nhất:
Tìm giá trị của m để cắt trục hoành tại 4 điểm phân biệt sao cho hình phẳng giới hạn bởi trục hoành phần phía trên trục hoành có diện tích bằng 96/15
Giả sử là diện tích hình phẳng giới hạn bởi đồ thị hàm số với các trục tọa độ. Hỏi mệnh đề nào là đúng?
Cho đồ thị hàm số và đường tròn (C) Tính diện tích hình phẳng được tô đậm trên hình?
Xét hình chắn phía parabol (P) y = x2, phía trên đường thẳng đi qua điểm A(1;4) và hệ số góc k. Xác định k để hình phẳng trên có diện tích nhỏ nhất.