Tìm m để bất phương trình 2cos2x+3sin2x≥m.3cos2x nghiệm đúng ∀x∈ℝ
A. m≤0
B. m≤1
C. m≤4
D. m≤-1
Đáp án B
Đặt sin2x=t (t∈0;1)BPT⇔21-t+3t≥m.31-t⇔21-t+3t31-t≥mĐặt f(t)=21-t+3t31-t=231-t+32t-1⇒f'(t)=-231-tln23+2.32t-1.ln3>0 với∀t∈[0;1]⇒Hàm f(t) luôn đồng biến trên [0;1]Ta có f(0)=1 và f(1)=4Để BPT nghiệm đúng với∀x∈ℝ thì minf(t)t∈[0;1]≥m⇔1≥m⇔m≤1
Có bao nhiêu cặp số tự nhiên a,b thỏa mãn log73<logab<log37
Có bao nhiêu cặp số tự nhiên a, b thỏa mãn log43<logab<log23
Biết các số thực dương x,y khác 1 thỏa mãn logyxy=logxy và x≠y thì:
Tìm tập xác định D của hàm số y=log33-x
Hàm số y=log54-x2 đồng biến trên khoảng nào?
Tìm các giá trị m để y=lnx-1x-m nghịch biến trên 2;3
Gọi tập xác định là D. Tìm tập xác định của hàm số y=x2x-x2-1
Xét phương trình 2ax-x2=3x;a∈ℤ ngoài nghiệm x=0 ra thì:
Cho fx=logxx+2 Tính f'(2)
Cho fx=logx2 0<x≠1. Tính f'(2).
Đặt F=log1xy2 Đẳng thức nào dưới đây đúng ∀x>0,y>0 và x≠1
Cho fx=34x-x2 Khi đó:
Giải bất phương trình: log2-14x-1>log2-11-2x
Giải bất phương trình log32x-32-x <1
Phương trình 2fx=3gx tương đương với phương trình nào dưới đây?
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A (3; 3; 1), B (0; 2; 1) và mặt phẳng (α): x + y + z – 7 = 0. Đường thẳng (d) nằm trên (α) sao cho mọi điểm của (d) cách đều hai điểm A, B có phương trình là
Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu (S): x2 + y2 + z2 – 4x + 10y – 2z – 6 = 0. Cho m là số thực thỏa mãn giao tuyến của hai mặt phẳng lần lượt có phương trình y = m và x + z – 3 = 0 tiếp xúc với mặt cầu (S). Tích tất cả các giá trị mà m có thể nhận được bằng:
Xét hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn điều kiện 2f (x) – 3f (1 –x) = x1−x . Tính tích phân I = ∫01fxdx .
Xét các số phức z = a + bi, (a, b ∈ ℝ) thỏa mãn 4(z – z¯ ) – 15i = i(z + z¯ – 1)2. Tính F = a + 4b khi z−12+3i đạt giá trị nhỏ nhất.
Cho đồ thị (C): y = f(x)=x . Gọi (H) là hình phẳng giới hạn bởi đồ thị (C), đường thẳng x = 9 và trục Ox. Cho điểm M thuộc đồ thị (C) và điểm A(9; 0). Gọi V1 là thể tích khối tròn xoay khi cho (H) quay quanh trục Ox, V2 là thể tích khối tròn xoay khi cho tam giác AOM quay quanh trục Ox. Biết rằng V1 = 2 V2. Tính diện tích S phần hình phẳng giới hạn bởi đồ thị (C) và đường thẳng OM .
Trong không gian với hệ tọa độ Oxyz, cho ba đường thẳng (d1): x−32 = y+11 = z−2−2 , (d2): x+13 = y−2 = z+4−1 và (d3): x+34 = y−2−1 = z6 . Đường thẳng song song với (d3), cắt (d1) và (d2) có phương trình là
Trong không gian với hệ tọa độ Oxyz, biết mặt phẳng (P): ax + by + cz – 27 = 0, (a, b, c ∈ ℝ, a2 + b2 + c2 ≠ 0) đi qua hai điểm A (3; 2; 1), B (–3; 5; 2) và vuông góc với mặt phẳng (Q): 3x + y + z + 4 = 0. Tính tổng S = a + b + c.
Trên mặt phẳng tọa độ, cho số phức z = – 1 – 4i. Điểm nào sau đây là điểm biểu diễn của số phức z – z¯ ?
Trong không gian với hệ tọa độ Oxyz, cho ba điểm A (0; 1; 0), B (2; 2; 2), C (–2; 3; 1) và đường thẳng (d): x−12 = y+2−1 = z−32 . Tìm điểm M thuộc (d) để thể tích V của tứ diện M.ABC bằng 3.
Gọi (H) là hình phẳng giới hạn bởi đồ thị hàm số y = ex và hai đường thẳng x = 0, x = 1 . Thể tích của khối tròn xoay tạo thành khi quay (H) xung quanh trục Ox là