Cho hai hàm số
ycó đồ thị (C) và
y=có đồ thị (P) như hình vẽ. Diện tích hình phẳng giới hạn bởi (C) và (P) có giá trị nằm trong khoảng nào sau đây?
A. (0;1)
B. (1;2)
C. (2;3)
D. (3;4)
Phương pháp:
- Xét phương trình hoành độ giao điểm, tìm nghiệm.
- Diện tích hình phẳng giới hạn bởi các đồ thị hàm
y=f(x),y=g(x) và các đường thẳng
Cách giải:
Phương trình hoành độ giao điểm của (C) và (P) là
Dựa vào đồ thị ta thấy hai đồ thị hàm số tiếp
xúc nhau tại điểm có hoành độ x=-1 và cắt nhau
tại điểm có hoành độ x=1 nên phương trình (*)
có nghiệm x=-1 (bội 2) và x=1 (nghiệm đơn).
Giả sử F(x) là nguyên hàm của hàm số f(x)=4x-1. Đồ thị hàm số F(x) và f(x) cắt nhau tại một điểm trên trục tung. Tọa độ các điểm chung của hai đồ thị hàm số trên là:
Tính thể tích V của vật thể giới hạn bởi hai mặt phẳng x=0 và x=4 , biết rằng khi cắt bởi mặt phẳng tùy ý vuông góc với trục Ox tại điểm có hoành độ x(0<x<4) thì được thiết diện là nửa hình tròn bán kính
Gọi (H) là hình phẳng giới hạn bởi parabol
y= trục hoành và trục tung. Gọi k1,k2(k1>k2) lần lượt là hệ số góc của đường thẳng qua điểm A(0;9 và chia (H) thành ba hình mặt phẳng có diện tích bằng nhau( tham khảo hình vẽ bên). Giá trị của k1-k2 bằng
Cho hàm số f(x) liên tục trên đoạn [0;1] thỏa mãn 2f(x)+3f(1-x)=x với mọi x. Tích phân bằng
Diện tích hình phẳng giới hạn bởi đồ thị hàm số y=4-(x>0) đường thẳng y=-1,đường thẳng y=1 và trục tung được diện tích như sau:
Cho hình phẳng giới hạn bởi các đường quay xung quanh trục Ox. Tính thể tích vật thể tròn xoay được sinh ra.
Cho hàm số y=f(x) nhận giá trị dương và có đạo hàm liên tục trên đoạn [0;3] thoả mãn f(0)=3, f(3)=8 và Giá trị của f(2) bằng
Gọi S là diện tích hình phẳng giới hạn bởi đồ thị hàm số và trục hoành như hình vẽ bên. Mệnh đề nào sau đây sai?