Tìm acgumen của số phức: z=2sinπ5-i.cosπ5
A. π5+k2π
B. -π5+k2π
C. -π10+k2π
D. -3π10+k2π
Chọn D.
Cho số phức z = 1 + i2 + i4 +...+ i2n +...+ i2016, n ∈ N. Môđun của z bằng?
Số phức z=7-17i5-i có phần thực là
Cho hai số phức z1 = -2 - 3i; z2 = 1 + 4i. Tính z1.z2
Trong C, phương trình z2 + 3iz + 4 = 0 có nghiệm là:
Cho hai số phức z1=2-2i; z2=3+i. Viết số phức z1z2 dưới dạng lượng giác
Cho số phức z = a + bi (a, b ∈ R). Để điểm biểu diễn của z nằm trong dải (-2;2), ở hình 1, điều kiện của a và b là:
Cho z1 = 2 - 3i; z2 = -2 + 8i. Tính z1 + z2?
Cho số phức z=3-2i1+i2. Môđun của w=iz+z¯ là
Cho số phức z = 6 + 7i. Số phức liên hợp của z là
Phương trình 2 + iz2 + az + b = 0 (a, b ∈ C) có hai nghiệm là 3 + i và 1 - 2i. Khi đó a = ?
Tập hợp các điểm biểu diễn số phức z thỏa mãn |z| < 1 trên mặt phẳng tọa độ là:
Cho z = 3 + 4i. Tìm căn bậc hai của z.
Tìm phần ảo của số phức z = 1 + i5
Cho số phức z thỏa mãn điều kiện: 1+iz¯-1-3i=0. Phần ảo của số phức w = 1 - iz + z là
Trong C, phương trình z2 - z + 1 = 0 có tổng hai nghiệm là:
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A (3; 3; 1), B (0; 2; 1) và mặt phẳng (α): x + y + z – 7 = 0. Đường thẳng (d) nằm trên (α) sao cho mọi điểm của (d) cách đều hai điểm A, B có phương trình là
Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu (S): x2 + y2 + z2 – 4x + 10y – 2z – 6 = 0. Cho m là số thực thỏa mãn giao tuyến của hai mặt phẳng lần lượt có phương trình y = m và x + z – 3 = 0 tiếp xúc với mặt cầu (S). Tích tất cả các giá trị mà m có thể nhận được bằng:
Xét hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn điều kiện 2f (x) – 3f (1 –x) = x1−x . Tính tích phân I = ∫01fxdx .
Xét các số phức z = a + bi, (a, b ∈ ℝ) thỏa mãn 4(z – z¯ ) – 15i = i(z + z¯ – 1)2. Tính F = a + 4b khi z−12+3i đạt giá trị nhỏ nhất.
Cho đồ thị (C): y = f(x)=x . Gọi (H) là hình phẳng giới hạn bởi đồ thị (C), đường thẳng x = 9 và trục Ox. Cho điểm M thuộc đồ thị (C) và điểm A(9; 0). Gọi V1 là thể tích khối tròn xoay khi cho (H) quay quanh trục Ox, V2 là thể tích khối tròn xoay khi cho tam giác AOM quay quanh trục Ox. Biết rằng V1 = 2 V2. Tính diện tích S phần hình phẳng giới hạn bởi đồ thị (C) và đường thẳng OM .
Trong không gian với hệ tọa độ Oxyz, cho ba đường thẳng (d1): x−32 = y+11 = z−2−2 , (d2): x+13 = y−2 = z+4−1 và (d3): x+34 = y−2−1 = z6 . Đường thẳng song song với (d3), cắt (d1) và (d2) có phương trình là
Trong không gian với hệ tọa độ Oxyz, biết mặt phẳng (P): ax + by + cz – 27 = 0, (a, b, c ∈ ℝ, a2 + b2 + c2 ≠ 0) đi qua hai điểm A (3; 2; 1), B (–3; 5; 2) và vuông góc với mặt phẳng (Q): 3x + y + z + 4 = 0. Tính tổng S = a + b + c.
Trên mặt phẳng tọa độ, cho số phức z = – 1 – 4i. Điểm nào sau đây là điểm biểu diễn của số phức z – z¯ ?
Trong không gian với hệ tọa độ Oxyz, cho ba điểm A (0; 1; 0), B (2; 2; 2), C (–2; 3; 1) và đường thẳng (d): x−12 = y+2−1 = z−32 . Tìm điểm M thuộc (d) để thể tích V của tứ diện M.ABC bằng 3.
Gọi (H) là hình phẳng giới hạn bởi đồ thị hàm số y = ex và hai đường thẳng x = 0, x = 1 . Thể tích của khối tròn xoay tạo thành khi quay (H) xung quanh trục Ox là