Cho hàm số có 1 cực trị. Khi đó, nếu đồ thị hàm số nằm hoàn toàn phía trên trục hoành (không có điểm chung với trục hoành) thì:
A.
B.
C.
D.
Đáp án A
Hàm số chỉ có 1 cực trị thì y' = 0 có 1 nghiệm , khi đó đồ thị có dạng:
Trong hai trường hợp trên ta thấy nếu đồ thị hàm số nằm hoàn toàn phái trên trục hoành thì chỉ xảy ra trường hợp a > 0, do đó và điểm cực tiểu (0; c) cũng phải nằm phía trên trục hoành hay c > 0
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình vẽ?
Đường cong trong hình bên là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào?
Cho hàm số bậc ba y = f(x) có đồ thị (C) chỉ có 2 điểm chung với trục hoành. Chọn kết luận đúng:
Cho hàm số bậc ba y = f(x) có hai điểm cực trị thỏa mãn: . Khi đó đồ thị hàm số có mấy điểm chung với trục Ox?
Cho hàm số y = f(x) có hai cực trị cực đại, cực tiểu thỏa mãn . Khi đó:
Nếu điểm cực tiểu của đồ thị hàm số bậc ba nằm ở trục hoành thì: