Một chiếc máy có hai động cơ I và II hoạt động độc lập với nhau.Xác suất để động cơ I và động cơ II chạy tốt lần lượt là 0,8 và 0,7. Hãy tính xác suất để : Cả hai động cơ đều không chạy tốt
A.0,23
B.0,56
C. 0,06
D.0,04
Chọn C.
Gọi D là biến cố "Cả hai động cơ đều chạy không tốt".
Gọi A là biến cố động cơ I chạy tốt : P(A) = 0, 8
Gọi B là biến cố động cơ II chạy tốt : P(B) = 0,7
Ta thấy D= .
Hai biến cố và độc lập với nhau nên P(D=(1-P(A)). (1-P(B))=0,06.
Một hộp chứa 3 viên bi xanh, 5 viên bi đỏ và 6 viên bi vàng. Lấy ngẫu nhiên 6 viên bi từ hộp, tính xác suất để 6 viên bi được lấy ra có đủ cả ba màu.
Một đoàn tàu có 7 toa ở một sân ga. Có 7 hành khách từ sân ga lên tàu, mỗi người độc lập với nhau và chọn một toa một cách ngẫu nhiên. Tìm xác suất của các biến cố sau
A: “ Một toa 1 người, một toa 2 người, một toa có 4 người lên và bốn toa không có người nào cả”
Có 13 học sinh của một trường THPT đạt danh hiệu học sinh xuất sắc trong đó khối 12 có 8 học sinh nam và 3 học sinh nữ, khối 11 có 2 học sinh nam. Chọn ngẫu nhiên 3 học sinh bất kỳ để trao thưởng, tính xác suất để 3 học sinh được chọn có cả nam và nữ đồng thời có cả khối 11 và khối 12.
Cho đa giác đều 12 đỉnh. Chọn ngẫu nhiên 3 đỉnh trong 12 đỉnh của đa giác. Xác suất để đỉnh được chọn tạo thành tam giác đều là
Một con súc sắc đồng chất được gieo 6 lần. Xác suất để được một số lớn hơn hay bằng 5 xuất hiện ít nhất 5 lần là
Ba người cùng bắn vào 1 bia. Xác suất để người thứ nhất, thứ hai,thứ ba bắn trúng đích lần lượt là 0,8 ; 0,6; 0,5. Xác suất để có đúng 2 người bắn trúng đích bằng:
Từ các chữ số 0, 1, 2, 3, 5, 6, 7 lập được bao nhiêu số có bốn chữ số khác nhau và chia hết cho 15?
Bạn Tít có một hộp bi gồm 2 viên đỏ và 8 viên trắng. Bạn Mít cũng có một hộp bi giống như của bạn Tít. Từ hộp của mình, mỗi bạn lấy ra ngẫu nhiên 3 viên bi. Tính xác suất để Tít và Mít lấy được số bi đỏ như nhau
Một chiếc máy có hai động cơ I và II hoạt động độc lập với nhau.Xác suất để động cơ I và động cơ II chạy tốt lần lượt là 0,8 và 0,7. Hãy tính xác suất để cả hai động cơ đều chạy tốt ;
Một con súc sắc không đồng chất sao cho mặt bốn chấm xuất hiện nhiều gấp 3 lần mặt khác, các mặt còn lại đồng khả năng. Tìm xác suất để xuất hiện một mặt chẵn
Với n là số nguyên dương, gọi là hệ số của trong khai triển thành đa thức của . Tìm n để
Có 3 bó hoa. Bó thứ nhất có 8 hoa hồng, bó thứ hai có 7 bông hoa ly, bó thứ ba có 6 bông hoa huệ. Chọn ngẫu nhiên 7 hoa từ ba bó hoa trên để cắm vào lọ hoa, tính xác suất để trong 7 hoa được chọn có số hoa hồng bằng số hoa ly.
Tổng các hệ số nhị thức Niu – tơn trong khai triển (1+x)3n bằng 64. Số hạng không chứa x trong khai triển là: