Biết rằng S = 1 + 2.3 + 3.32 + … + 11.310 = .Tính
A. P = 1
B. P = 2
C. P = 3
D. P = 4
Chọn C.
Từ giả thiết suy ra 3S = 3 + 2.32 + 3.33 + … + 11.311. Do đó
-2S = S – 3S = 1 + 3 + 32 + … + 310 – 10.311
Vì
Cho cấp số cộng (un) có công sai d = -3 và u22 + u32 + u42 đạt giá trị nhỏ nhất. Tính tổng S100 của số hạng đầu tiên của cấp số cộng đó.
Cho cấp số nhân (un) có u1 = 3; 15u1 – 4u2 + u3 đạt giá trị nhỏ nhất. Tìm số hạng thứ 13 của cấp số nhân đã cho.
Tìm tất cả các giá trị của tham số m để phương trình sau có ba nghiệm phân biệt lập thành một cấp số nhân: x3 – 7mx2 + 2(m2 + 6m)x – 64 = 0.
Cho a, b, c là các số thực, theo thứ tự lập thành cấp số nhân.
Biết Tìm b.
Một tam giác vuông có chu vi bằng 3a, và 3 cạnh lập thành một cấp số cộng. Tính độ dài cạnh lớn nhất của tam giác theo a.
Cho 3 số tạo thành một cấp số cộng có tổng 21. Nếu thêm 2, 3, 9 lần lượt vào số thứ nhất, số thứ hai, số thứ ba tạo thành một cấp số nhân. Tìm 3 số đó.
Cho 3 số dương có tổng là 65 lập thành một cấp số nhân tăng, nếu bớt một đơn vị ở số hạng thứ nhất và 19 đơn vị ở số hạng thứ ba ta được một cấp số cộng. Tìm số lớn nhất trong 3 số đó?
Cho các số x + 2; x + 14; x + 50 theo thứ tự lập thành một cấp số nhân. Khi đó x2 + 2013 bằng:
Biết rằng tồn tại hai giá trị của tham số m để phương trình sau có bốn nghiệm phân biệt lập thành một cấp số cộng: x4 – 10x2 + 2m2 + 7m = 0, tính tổng lập phương của hai giá trị đó.
Tính tổng tất cả các số hạng của một cấp số nhân , biết số hạng đầu bằng 18, số hạng thứ hai bằng 54 và số hạng cuối bằng 39366.
Cho dãy số thỏa mãn u1 = 5; un+1 = 3un+ 4/3. Giá trị nhỏ nhất của n để u1 + u2 + … + un > 5100 - 2/3n là
Ta biết rằng trong một hồ sen; số lá sen ngày hôm sau bằng 3 lần số lá sen ngày hôm trước. Biết rằng ngày đầu có 1 lá sen thì tới ngày thứ 10 hồ sẽ đầy lá sen. Hỏi nếu ngày đầu có 9 lá sen thì tới ngày thứ mấy hồ sẽ đầy lá sen?