Phương trình tiếp tuyến của đồ thị hàm số tại điểm có tung độ tiếp điểm bằng 2 là:
A. y = 8x-6; y = -8x-6
B. y = 8x-6; y = -8x+6
C. y = 8x-8; y = -8x+8
D. y = 40x-57
Đáp án A
- Tập xác định: D = R.
- Đạo hàm:
- Tung độ tiếp điểm bằng 2 nên hoành độ tiếp điểm là nghiệm phương trình:
+) Tại M(1; 2) thì y’(1) = 8. Phương trình tiếp tuyến là:
y = 8(x-1) +2 hay y = 8x – 6
+) Tại N(-1; 2) thì y’ (-1) = - 8. Phương trình tiếp tuyến là:
y = - 8(x + 1) + 2 hay y = -8x - 6.
- Vậy có 2 tiếp tuyến thỏa mãn đề bài là: y = 8x – 6 và y = -8x – 6.
Trên đồ thị của hàm số có điểm M sao cho tiếp tuyến tại đó cùng với các trục tọa độ tạo thành một tam giác có diện tích bằng 2. Tìm tọa độ M?
Cho tứ diện ABCD có cạnh AB, BC, BD bằng nhau và vuông góc với nhau từng đôi một. Khẳng định nào sau đây đúng?
Phần I: Trắc nghiệm
Cho hình hộp ABCD.A'B'C'D' có tâm O. Gọi I là tâm hình bình hành ABCD. Đặt . Khẳng định nào sau đây đúng?
Cho hình hộp ABCD.A'B'C'D'. Gọi I và K lần lượt là tâm của hình bình hành ABB’A’ và BCC’B’. Khẳng định nào sau đây sai?
Cho tứ diện ABCD với , CD=AD .Gọi là góc giữa AB và CD. Chọn khẳng định đúng?
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a, SA ⊥ (ABCD) và Gọi M, N lần lượt là trung điểm của BC và CD: Tính khoảng cách từ điểm C đến mặt phẳng (SMN)?
Cho hàm số g(x) = x.f(x) + x với f(x) là hàm số có đạo hàm trên R. Biết g'(3) = 2, f'(3) = -1 Giá trị của g(3) bằng:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a, SA ⊥ (ABCD) và Gọi M, N lần lượt là trung điểm của BC và CD: Tính góc giữa SM và (ABCD).
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cạnh huyền BC = a. Hình chiếu vuông góc của S lên (ABC) trùng với trung điểm BC. Biết SB = a. Tính số đo của góc giữa SA và(ABC).
Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O. Biết SA = SC và SB = SD. Khẳng định nào sau đây sai?
Gọi S là tập các số nguyên của a sao cho có giá trị hữu hạn. Tính tổng các phần tử của S.