Trong mặt phẳng tọa độ Oxy phép vị tự tâm I(1;4) tỉ số k = -2, biến đường thẳng d có phương trình : 7x + 3y - 4 = 0 thành đường thẳng d’ có phương trình:
A. 7x + 3y - 49 = 0
B. 3x + 7y - 47 = 0
C. 7x + 3y + 49 = 0
D. 3x + 7y - 49 = 0
Phép vị tự tâm I (1; 4) tỉ số k = -2, biến M(x; y) thuộc d thành M’(x’;y’) thuộc d'
⇒
Thay vào phương trình d ta được
⇒ d' có phương trình là: 7x + 3y - 49 = 0.
Đáp án A
Cho hai đường thẳng d và d’ cắt nhau. Có bao nhiêu phép vị tự biến d thành d’?
Cho tam giác ABC nội tiếp đường tròn (O;R). Điểm A cố định, dây BC có độ dài bằng R, G là trọng tâm tam giác ABC. Khi A di động trên (O) thì G di động trên đường tròn (O’) có bán kính bằng bao nhiêu?
Trong mặt phẳng tọa độ Oxy cho đường thẳng d có phương trình : 3x + y + 6 = 0. Qua phép vị tự tâm O(0;0) tỉ số k = 2, đường thẳng d biến thành đường thẳng d’ có phương trình.
Cho hình thang ABCD có AD // BC và AD = 2 BC. Gọi O là giao điểm hai đường chéo hình thang. Phép vị tự tâm A biến C thành O có tỉ số vị tự là:
Cho tam giác ABC có trọng tâm G, trực tâm H, tâm đường tròn ngoại tiếp O. gọi D, E, F lần lượt là trung điểm các cạnh BC, CA, AB. Phép vị tự tâm G tỉ số -1/2 biến:
Cho tam giác ABC nội tiếp đường tròn (O). BC cố định, I là trung điểm BC , G là trọng tâm của tam giác ABC. Khi A di động trên (O) thì G di động trên đường tròn (O’) là ảnh của (O) qua phép vị tự nào sau đây?
Trong mặt phẳng tọa độ Oxy phép vị tự tâm O(0;0) tỉ số k = -2, biến đường tròn (C) có phương trình: thành đường tròn (C’) có phương trình:
Trong mặt phẳng tọa độ Oxy phép vị tự H(1;2) tỉ số k = -3 điểm M(4;7) biến thành điểm M’ có tọa độ
Trong mặt phẳng tọa độ Oxy phép vị tự tâm H(1;-3) tỉ số k = 1/2, biến đường tròn (C) có phương trình : thành đường tròn (C’) có phương trình:
Trong mặt phẳng tọa độ Oxy phép vị tự tâm I(1;2) tỉ số k = 5, biến điểm M(2;-3) thành điểm M’ có tọa độ:
Cho tam giác ABC có trọng tâm G, trực tâm H, tâm đường tròn ngoại tiếp O. gọi D, E, F lần lượt là trung điểm các cạnh BC, CA, AB.
Phép vị tự tâm G tỉ số -1/2 biến tam giác ABC thành
Cho tam giác ABC có trọng tâm G, trực tâm H, tâm đường tròn ngoại tiếp O. gọi D, E, F lần lượt là trung điểm các cạnh BC, CA, AB.
Phép vị tự tâm G tỉ số -1/2 biến thành
Trong mặt phẳng tọa độ Oxy phép vị tự tâm H(1;0) tỉ số k = 2, biến đường tròn (C) có phương trình : thành đường tròn (C’) có phương trình
Cho hai đường tròn (O;R) và (O’;R) (O không trùng với O’). Có bao nhiêu phép vị tự biến (O) thành (O’)?